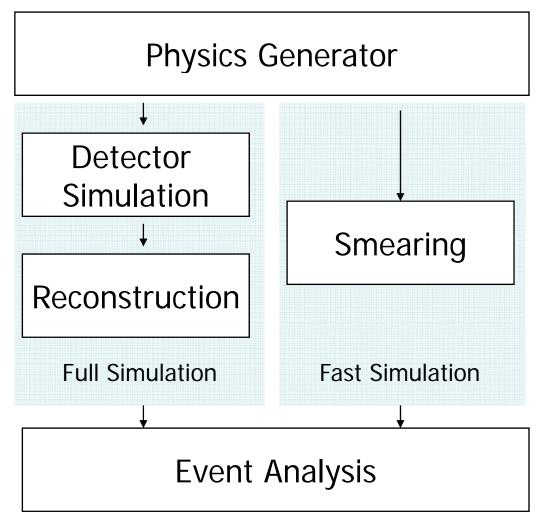


Fast Simulation in Atlas


Simon J.H. Dean 27/09/2007

Questions to be answered

- What is Atlfast?
- How does it perform?
- How to run Atlfast?
- How does it work?
- What are current areas of development?

What is Atlfast?

- ATLas FAST simulation
- Will talk mainly about the existing Atlfast in 12.0.X and 13.0.X ("Atlfast Phase 1")
- Replaces full chain

How does it perform?

- Full simulation + reconstruction currently takes $\sim \frac{1}{2}$ hr per event (anecdotal)
- Atlfast test jobs in 12.0.3

Sample	Z→ee (10k, Pythia)	ttH(H→bb) (10k, Pythia)
Atlfast execute per event	8.15 ms	21.8 ms
Pythia execute per event	12.6 ms	200 ms
Total (includes initialisation)	307 s	2376 s

• 10^4 - 10^5 x faster than full chain

How does it perform?

- 30 fb⁻¹ data low luminosity contains ~900k
 ttjj events
 - Background to ttH(H \rightarrow bb) analysis
- $\frac{1}{2}$ hr per event \Rightarrow 51 CPU years
- * 0.24 s per event \Rightarrow 2.5 CPU days

How to run Atlfast?

- Instructions on web
 - www.hep.ucl.ac.uk/atlas/atlfast (static UCL page)
 - AtlfastDocumentation (Atlas TWiki portal)
- Easiest way is to
 - Set up a release directory
 - Set up run time environment (athena)
 - 'get_files XXXXtoAtlfasttoYYYY.py'
 - XXXX is Pythia or POOL
 - YYYY is CBNT, AOD and in r12 AAN
 - Configure script
 - 'athena XXXXtoAtlfasttoYYYY.py'

How to run Atlfast?

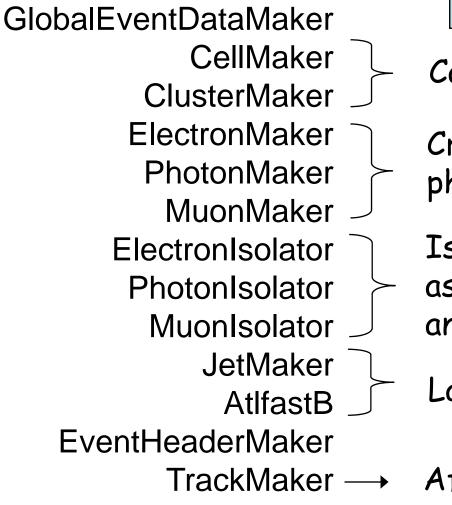
- cd Thessaloniki
- source setup.sh -tag=12.0.6
- export CMTPATH=/home/sdean/kits/12.0.6/AtlasProduction/12.0.6
- source

/home/sdean/kits/12.0.6/AtlasProduction/12.0.6/AtlasProducti onRunTime/cmt/setup.sh

- export CMTPATH="\$TestArea:\$CMTPATH"
- cd \$TestArea

Could go in setup script

- mkdir run
- cd run
- get_files PythiatoAtlfasttoAOD.py
- emacs PythiatoAtlfasttoAOD.py & (to explain jobOptions)
- get_files DC3.005340.ttH_poslepnu_jj_bb.py (replace include in PythiatoAtlfasttoAOD.py)
- athena PythiatoAtlfasttoAOD.py


How does it work?

- Sequence of Algorithms
 - Defined in Atlfast_AlgSequence_(No)FastShower.py (r12) or Atlfast(No)FastShowerGetter.py (r13)
 - Each Algorithm configured in Atlfast_ConfigAlgs_(No)FastShower.py
- Run after generator (or reading in generator events from POOL file)

Generators Interface

- Accessed via HepMC
 - General output format for all generators
 - GenEvent, GenParticle, GenVertex
- Run over truth particle collections with Atlfast-based selectors
 - Predicate classes to accept/reject particle
 - "IsFinalState", "IsCharged", etc...

Atlfast Algorithms in r12

As in Atlfast_AlgSequence_NoFastShower.py

Calorimetry

Create some basic physics objects

Isolation and create associations between Clusters and Electron/Photon/Muons

Label and tag jets

ackMaker — After everything, make tracks

Fast Simulation in Atlas

Atlfast Algorithms in r13

GlobalEventDataMaker

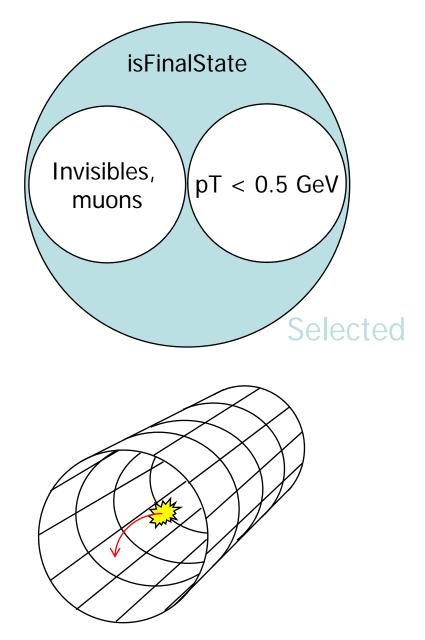
TrackMaker **TauMaker** TauTagger CellMaker ClusterMaker ElectronMaker PhotonMaker MuonMaker ElectronIsolator PhotonIsolator **MuonIsolator** JetMaker AtlfastB EventHeaderMaker

As in AtlfastNoFastShowerGetter.py

Make tracks Create and tag track-based taus (new) Calorimetry

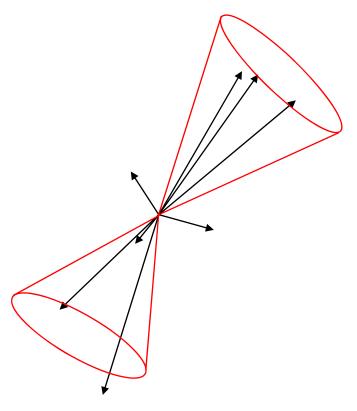
Create some basic physics objects

Isolation and create associations between Clusters and Electron/Photon/Muons


Label and tag jets

Simon J.H. Dean

Fast Simulation in Atlas


CellMaker

- Begins by selecting particles that will deposit in the calorimeter
- Transports them to the calorimeter face (simple 2T field approx.)
- Deposits true particle energies in 0.1x0.1 cells (ηxφ space) in range |η|<5

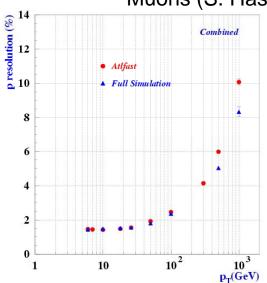
ClusterMaker

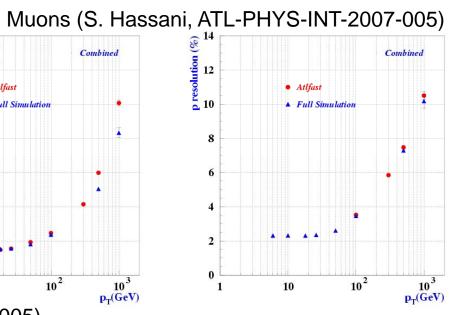
- Runs clustering routines on Cells (also possible for Tracks)
 - "Cone": Atlfast dedicated routine!
 - "Kt": interfaces KtEvent routine used also in full reco
 - "Shared": shares Cell energies between Clusters
- Keeps Clusters with ET > 5 GeV

FastShower

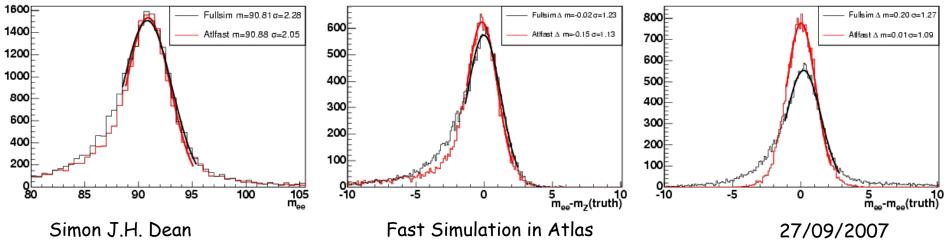
- Used from CellMaker to give more accurate calorimeter description
- Two compartments (EM, hadronic) considered
- Particle energies spread into neighbouring cells (shower shape)
- Not used by default
 - Run with "FastShower" scripts instead of "NoFastShower"
- Precursor to FastCaloSim ("Atlfast Phase 2")

Electrons, Muons, Photons


- ReconstructedParticles made with DefaultReconstructedParticleMaker
 - Configured with PDGID of specific particle
 - ParticleType = 11,13,22 for e,γ,μ respectively
 - Particle 4-vector smeared according to specific resolution function + random number generator


eg...
electrons
$$\frac{\sigma}{E}$$
 $=$ $\frac{12\%}{\sqrt{E}}$ \oplus 0.7% \oplus $\frac{0.245}{E_T}$ for $|\eta| \le 1.4$ $\frac{\sigma}{E}$ $=$ $\frac{12\%}{\sqrt{E}}$ \oplus 0.7% \oplus $\frac{0.306 \cdot (2.4 - |\eta|) + 0.228}{E}$ for $1.4 < |\eta| < 2.5$

- \textbf{p}_{T} and η cuts for MC and smeared particle


Lepton Performance

- Improved muon resolutions in 12.0.6 (Samira)
- Electrons were sufficient

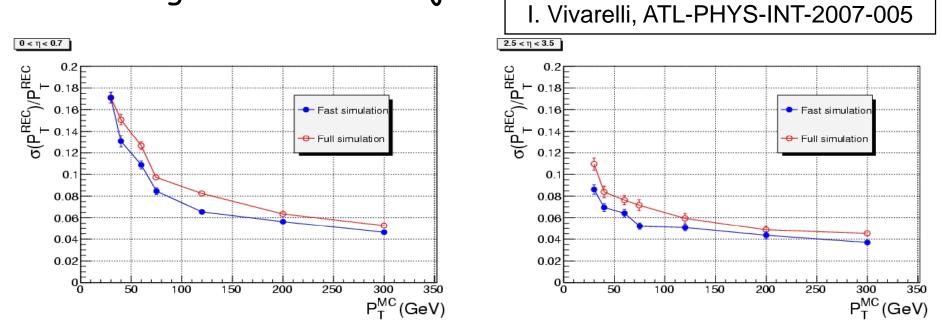
Electrons (M. Duehrssen, ATL-PHYS-INT-2007-005)

Isolators

- Run for e, γ, μ
- Check to see if within dR < 0.15 of a Cluster
- If so, isolated particle must have
 - No other Clusters within dR < 0.4
 - Sum of all unclustered cell ETs within dR < 0.2 less than 10 GeV
- Electron-Cluster and Photon-Cluster associations made too

JetMaker

- Examines Clusters which have not been associated with ReconstructedParticle
- Smears 4-vector with resolution function


$$\frac{\sigma}{E} = \frac{50\%}{\sqrt{E}} \oplus 3\% \qquad \text{for } |\eta| \le 3.2 \text{ and}$$
$$\frac{\sigma}{E} = \frac{100\%}{\sqrt{E}} \oplus 7\% \qquad \text{for } 3.2 < |\eta| < 4.9$$

Adds 4-vector of any non-isolated muons within dR < 0.4 $\,$

- Creates Jet if
 - p_T > 10 GeV
 - |η| < 5
- Assigns labels if close to b-quark, c-quark or tau hadrons (dR < 0.3)

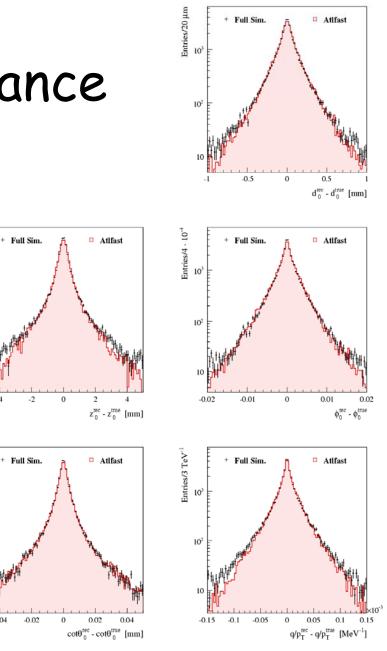
Jet Performance

 Noticeable differences between full and fast sim looking at default cone jets

· Underlying jet finder is fundamentally different

Fast Simulation in Atlas

AtlfastB


- Reads in Jet collection from JetMaker
- Applies measured efficiencies and rejections to Jet labels to produce tags
- B-tagging
- Tau-tagging
- Jet energy correction
 - Light or b-jet correction
 - Light jet correction for hadronic taus

TrackMaker

- Selector used to get charged final-state particles from MC event with
 - p_T > 0.5 GeV
 - |η| < 2.5
- Track parameters (d_0,z_0,\phi_0,cot\theta,q/p_) made and smeared
 - Correlated smearing, complicated
 - Produces covariance matrix

Tracking Performance

- Residuals show impressive agreement
- Even better in r13
 - improved correlations
 - improved electron tracks (conversions)

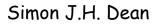
Simon J.H. Dean

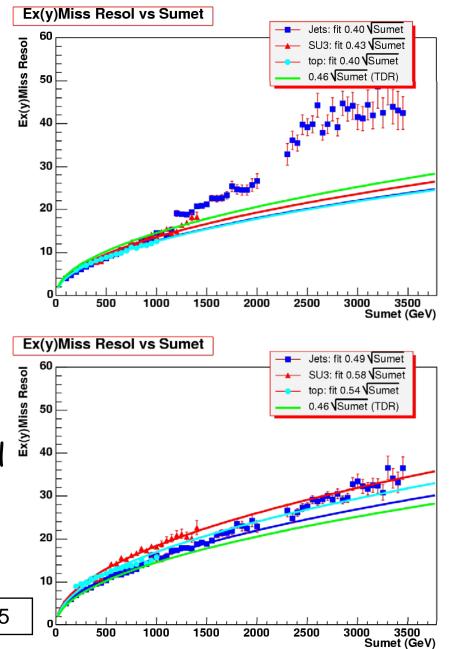
Fast Simulation in Atlas

-0.04

Entries/100 µn

Entries/1 · 10⁻²

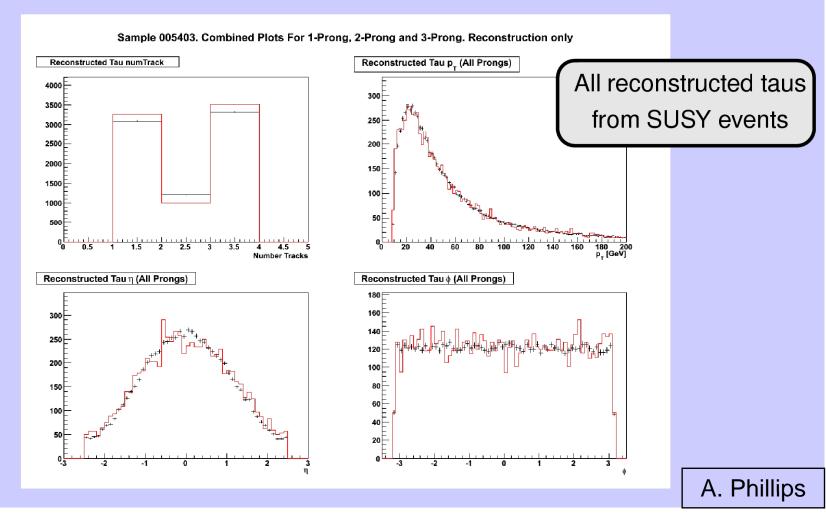

27/09/2007


Missing ET

- Evaluated in EventHeaderMaker
- Add 4-vectors of
 - Isolated electrons
 - Isolated photons
 - All muons
 - Jets
- Subtract muons in jets
- Smear unclustered cells and ¹ add these in too
- Missing $ET = (-p_x, -p_y, -p_z, 14TeV-E)$

D. Cavalli, ATL-PHYS-INT-2007-005

Fast Simulation in Atlas



27/09/2007

Track-based tau1p3p

- New in r13!
- Work done by TauID group (primarily Alan Phillips)
- TauMaker constructs Tau objects from tracks
- TauTagger applies a correction to simulate tagging results

Track-based tau1p3p

Simon J.H. Dean

Fast Simulation in Atlas

27/09/2007

AtlfastC

- In development by Glasgow group
- Addresses two big gaps in Atlfast-1:
 - ID efficiencies
 - Modelling of fakes
- Need to measure well and apply elements from matrix $\boldsymbol{\epsilon}$

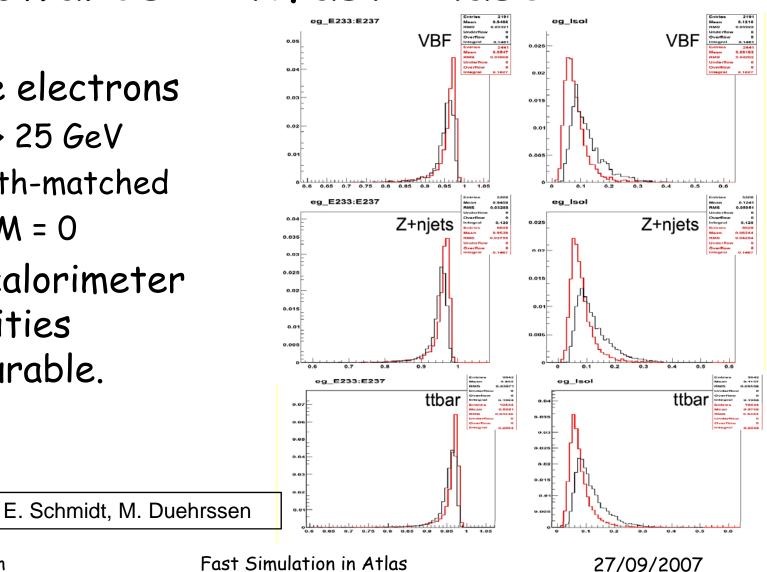
$$\frac{\epsilon_{ee}}{\epsilon_{ee}} = \epsilon_{e\gamma} = \epsilon_{e\mu} = \epsilon_{ejet} = \epsilon_{e\pi}$$

$$\frac{\epsilon_{ee}}{\epsilon_{\gamma e}} = \epsilon_{\gamma \gamma} = \epsilon_{\gamma \mu} = \epsilon_{\gamma jet} = \epsilon_{\gamma \pi}$$

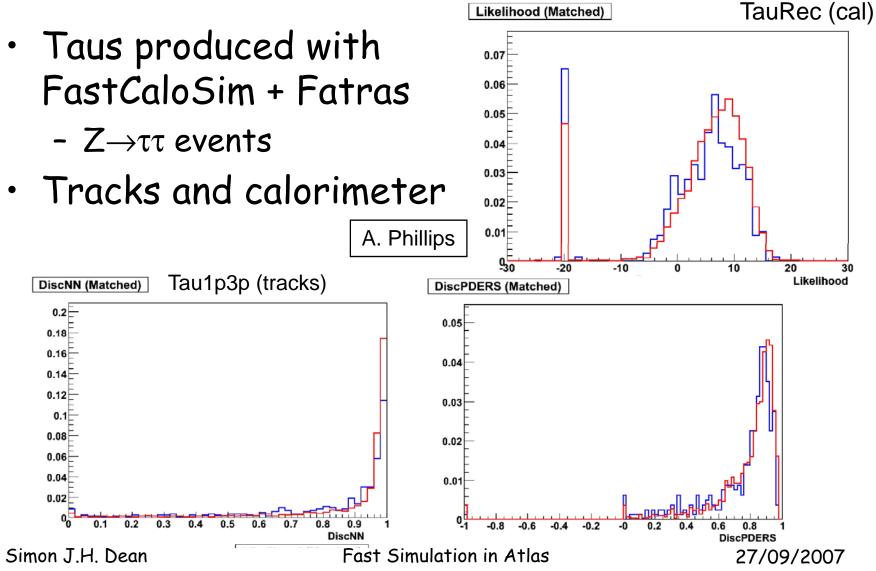
$$\frac{\epsilon_{\mu e}}{\epsilon_{\mu e}} = \epsilon_{\mu \gamma} = \epsilon_{\mu \mu} = \epsilon_{\mu jet} = \epsilon_{\mu \pi}$$

$$\frac{\epsilon_{jete}}{\epsilon_{jet}} = \epsilon_{jet\gamma} = \epsilon_{jet\mu} = \epsilon_{jet\mu} = \epsilon_{jet\pi}$$

$$\frac{\epsilon_{\mu e}}{\epsilon_{\pi e}} = \epsilon_{\pi \gamma} = \epsilon_{\pi \mu} = \epsilon_{\pi jet} = \epsilon_{\pi \pi}$$


Simon J.H. Dean

Fast Simulation in Atlas


١

- More "Atlas", less "Fast"
- Necessary due to complexity of full simulation routines and demand for high stats samples
- FastCaloSim
 - Parameterised showers in a full calorimeter
- Fatras
 - Fast tracking via hit simulation

- Single electrons
 - ET > 25 GeV
 - Truth-matched
 - IsEM = 0
- Fine calorimeter quantities measurable.

Simon J.H. Dean

Could be avoided if calo is

- Timing still prohibitive but getting better.....
- Project is at validation stage

 Atlfast FATRAS FastCaloSim EmptyCellBuilderTool FastShowerCellBuilderTool AddNoiseCellBuilderTool MisCalibTool CaloCellContainerFinalizerTool CaloClusterXXX JetsXXX MET other 		20ms 200ms 1200ms 320ms (alway 690ms 120ms 30ms 50ms 650ms (main 2000ms (4 jet 600ms 200ms	even s the Depe still rc nly to	same) nds on event activity, oom for optimization
• CBNT		150ms	Γ	M. Duehrssen
All		5500ms	_	
Simon J.H. Dean	Fast Simula	tion in Atlas		27/09/2007

What is planned for the future?

- Understanding the value of hybrids
 - eg.. muons from Atlfast-1, clusters from FastCaloSim, full-sim/Fatras tracks.
- Further development on AtlfastC
 - May be required by Atlfast-2 in any case