JET RECONSTRUCTION AND CALIBRATION

Additional material from: S. Menke, P. Francavilla and Z. Zenonos

 $\star\star\star\star\star$

Ist ARTEMIS annual meeting, 27-28 September 2007 - Chalkidiki, Greece

* * *

Outlook

- * Introduction: jet calibration strategy in ATLAS
- * Additional material provided by ARTEMIS members:
 - * Z. Zenonos: "TileCal simulation studies: first results on validation of hadronic physics simulation"
 - * S. Menke: "Local hadron calibration"
 - * P. Francavilla: "Effect on inclusive jet cross section measurement of systematic uncertainties: first approach"

* Jet reconstruction consists in obtaining from the calorimeter hadronic signals the kinematics of the particle jet or of the parton jet depending on where we want to have Theory-Data comparison.

Parton jet, Particle jet, Calorimeter jets are obtained running the same jet clustering algorithm on:

Partons

- stable particles after fragmentation
- calorimeter signals

Jet Reconstruction Algorithms

 Jet clustering algorithms must be applicable at any level: calorimeter signals, particles, partons (jet components).

Various jet clustering algorithms have been implemented in ATLAS. Brief description of the two that are mostly used for physics analysis:

Iterative seeded cone algorithm k_T algorithm

Once the jet components have been obtained the jet kinematics is calculated from the components applying the "recombination scheme": the recombination scheme used in ATLAS is the 4-momentum sum of the jet components.

Jet clustering: iterative seeded cone algorithm

1. All jet components in (η, φ) having $E_T > E_t$ seed are considered as seeds for the jets

2.For each seed (η^s, ϕ^s) all components lying at distance $<\Delta R_{\checkmark}$ are associated to the jet

3. if the seed position (η^s, φ^s) coincide (<0.05) with the jet centroide (η^c, φ^c) , the jet is considered stable otherwise $(\eta^s, \varphi^s) = (\eta^c, \varphi^c)$.

4. two jets sharing a percentual of energy energy > Δ **S** of the least energetic jets are combined, otherwise the shared components are associated to the closest jet.

	Δ R	E _⊤ seed	ΔS
ATLAS	0.4/0.7	1 GeV	50%
CMS	0.5	2 GeV	-
CDF	0.4/0.7	1 GeV	75%

Jet clustering algorithm : k_T

Jet components are clustered considering closness in ΔR and transverse momentum (k_T). k_T jets do not have predefined geometrical shape.

kT algorithm is infrared and collinear safe

- * After jets have been reconstructed we need to correct energy measurement for detector effects:
 - * calorimeter non compensation (e/h)
 - * effect of cracks, dead material, losses in front of calorimeter, longitudinal leakage, magnetic field effect
 - Jet calibration methods discussed here:
 - * H1 -> I. Vivarelli
 - Local Hadron Calib -> S. Menke
 - Energy Flow -> M. Hodgkinson

MC validation studies: TileCal sampling fraction Zenonos Zenonas

- * Many jet calibration schemes rely on how well Monte Carlo simulation (Geant4) predicts interacting particles with ATLAS calorimeters
- * Need to validate in detail Geant4 hadronic physics lists comparing results with test beam data

 $\langle \! \rangle$

- * Just an example is shown here: evolution of TileCal sampling fraction with respect to different physics lists
- * Ongoing activities: Geant4 had. physics validation with CTB data (V. Kazanine, I. Vivarelli), Geant4/Fluka comparison with TileCal TB data (M.Cascella, I. Vivarelli, T. Del Prete, A.D.)

TileCal Sampling Fraction Studies

ATLAS Hadronic Calorimeter: a sampling calorimeter

- → absorbsion of energy in high-density material (steel)
- → scintillating tiles periodically sample the energy deposited
- → infer the total energy of the original particle shower

TileCal Sampling Fraction: a constant parameter

- \rightarrow is used in the digitization step of MC simulation
- → multiplies the energy deposits in the scintillators to get the calibrated energy released in TileCal

energy deposited only in sensitive parts of cells -scintillators

energy deposited in TileCal cells

Tilerow 7

Tilerow 6

Tilerow 5

Physics List: MC particle physics data sets
 → QGSP: Quark Gluon String-Model
 → upgraded production cross-sections
 + theory driven model for final state

ATLAS beam line

Details of electron simulation in ATLAS

→ Pseudoprojective and $\theta = \pi/2$ configuration: the beam is impinging "unnaturally" (parallel to the ATLAS beam line) on TileCal; a configuration possible only at TBs.

→ The beam is always a square - 20 GeV electrons – no beam divergency simulated.

- → ATHENA 13.0.10 and G4.83 using different physics lists:
 - QGSP_EMV: it is supposed to be the same as G4.7 concerning electromagnetic showers.
 - QGSP: modified multiple scattering.
 - **QGSP_BERT:** model for intra-nuclear nucleon-nucleon scattering (concerning electrons, we expect an energy release very similar to QGSP)
- → ATHENA 12.0.07 and G4.7:
 - QGSP physics list

→ All the results are at the hits level: no electronics noise, no photostatistics, no digitization is applied.

→ For all the configurations the setup is TileCal standalone TB.

Given the new multiple scattering, it is expected to be different for **G4.7** and **G4.8**. We want to estimate this difference.

QGSP and **QGSP_BERT** expected to be the same concerning electrons energy release:

• confirmed for $\theta = \pi/2$ – discrepancies on the mean values at 3 permille.

QGSP_EMV:

- expected to reproduce G4.7 confirmed for θ=π/2 – the mean values agree within the errors
- is 2% higher with respect to G4.7 for η = 0.35

Summarizing on sampling fraction

Physics list	$\theta = \pi/2$	η = 0.35		
QGSP _{EMV} and G4.7 predict the same mean energy in the scintillators?	yes	no ^{QGSP} ENV is higher w.r.t. G4.7 by 2%		
QGSP _{EMV} and QGSP _{BERT} predict the same mean energy in the scintillators?	yes	yes		
Ratio $\frac{\langle E \rangle_{QGSP}^{EMV}}{\langle E \rangle_{QGSP}^{BERT}}$ where the error is the	0.965 ± 0.002	0.928 ± 0.002		
maximum spread between tilerows :				
The G4.7 sampling fraction is 1/35.9				
Simulating QGSP _{EMV} with the same sampling fraction might result in a 2% excess in energy (projective result).				
$QGSP$ and $QGSP_{BERT}$ sampling fraction is the same within 1% level at 90° and at $\eta = 0.35$. More eta points can shed light to the pseudorapidity dependence.				
Our present results show that $QGSP_{BERT}$ sampling fraction is $1/(34.3 \pm 0.2)$, where the error indicates the spread $90^{\circ} - \eta = 0.35$.				

Local Hadron Calibration Sven Menke

- * Use clusters (instead of towers) as input to jet clustering algorithms
- * Clusters are corrected for:
 - * "Hadronic energy losses" (i.e. clusters originating from charged pions) corrected for non-compensation
 - * Energy losses in dead material (between and in front of calorimeters)

Local Hadron Calibration

1st Artemis Annual Meeting

Sven Menke, MPI München

27. September 2007, Chalkidiki, Greece

luster/String

Local Hadron Calibration

- cluster moments and classification
- energy weights, dead material corrections, ar out-of-cluster corrections

Application to jets

- jet level corrections
- Plans
 - top-mass measurements in hadronic tt-bar events

Local Hadron Calibration

Classify and calibrate topo clusters to hadron-level Classification

- use shower shape variables (cluster moments) like shower depth and (weighted) energy density of the cell constituents normalized to cluster energy
- em showers are less deep and have higher average energy density than had showers
- derive phase space population in energy-depth-density space for charged and neutral pions
- make a cut on probability to observe a neutral pion with a-priori neutral-to-charged pion ratio of 1 : 2 (example plot shows endcap and 8 GeV < E_{clus} < 16 GeV)

Calibration

- treat only clusters classified as hadronic
 - except for dead material corrections which are available also for em clusters
- derive cell weights from Geant4 true energy (calibration hits) including invisible energy and absorber deposits and reconstructed cell energy for each η region and layer:

$$w_i = \langle E_{\text{true}} / E_{\text{reco}} \rangle, i = \text{bin#}(E_{\text{cluster}}, E_{\text{cell}} / V_{\text{cell}})$$

• example weights in main sampling of EM calorimeter for $2.0 < |\eta| < 2.2$

 Apply dead material and out-of-cluster corrections

S. Menke, MPI München

Local Hadron Calibration

1st Artemis Annual Meeting, Chalkidiki, Greece 2

Local Hadron Calibration Dead Material & Out-Of-Cluster Corrections

Dead material corrections

- account for deposits in material in front of and between calorimeter systems overlapping in $\eta \times \phi$ with cells from the cluster
- for charged pions (left plot)
- for neutral pions (right plot)

Out-Of-Cluster corrections

- account for all the rest
- mainly deposits in calorimeter cells left out by the cluster algorithm
- weighted with degree of isolation of the cluster to avoid double-counting

- Average G4Hit's energy deposited in dead material for 100 GeV pions (left)
- ► Dead Material Hits are saved in 53 separate areas with granularity $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ (right)
- corrections are derived from cell energies inside topo clusters close to the DM areas
- task is to find correlations of measured energies with expected (predicted) DM deposits

S. Menke, MPI München
 Local Hadron Calibration

Local Hadron Calibration > Performance

- ▶ Use two leading jets (K_{\perp} with R = 0.4) in di-jet MC samples in the region $0.2 < |\eta| < 0.4$
- Energy of the leading jets in this sample and region is about $150\pm40\,\text{GeV}$
- plot shows the ratio of total energy of the reconstructed jet over the energy of a matched truth jet (also K_{\perp} with R = 0.4) with $\Delta R < 0.05$ for EM-scale (red); weighted (blue); weighted+OOC (green); weighted+OOC+DM (black)

	EM	W	W+OOC	W+OOC+DM
mean (%)	71.8	82.0	84.5	92.5
σ (%)	6.7	6.5	6.3	6.7
$\sigma/{\sf mean}$ (%)	9.4	7.9	7.5	7.2

- mean and relative resolution improve in every step
- final deviation from truth jet energy is only 7.5%consistent with expected out-of-jet corrections ($\sim 3\%$ cluster inefficieny;

 $\sim 3\%$ misclassification; $\sim 2\%$ magnetic bending)

S. Menke, MPI München

Local Hadron Calibration

1st Artemis Annual Meeting, Chalkidiki, Greece

5

Plans

Artemis PhD student (P. Giovannini) starts end of October

- development of jet-level corrections on top of local hadron calibration
 the final 7.5% for jet energy response
- application of in-situ weighting to parton level in tt-bar events
 the go from hadron to parton level
- measurement of the top-mass in the all hadronic channel
 this channel relies most on jet performance
- Maintenence and further improvements of local hadron calibration within the MPI/HEC group
 especially the 3% due to misclassification need to be addressed
- Commissioning and top-mass measurement in the semileptonic top-pair channel within the MPI/HEC group
 2 more ongoing PhD studies

Towards first measurements: inclusive jet cross section Paolo Francavilla

- First attempt to study systematic uncertainties in inclusive jet cross section measurements:
 - * Theoretical uncertainties: uncertainties on LO vs NLO calculations, renormalization and factorization scales, uncertainties on PDFs
 - * Experimental uncertainties: effect of jet energy scale and of jet resolution

* Studies performed on parton jets only (generator level)

- Studied difference in predicted inclusive jet cross-section between LO and NLO calculations
- Renormalization (μ_r) and factorization (μ_f) scales have been varied and effect on cross section has been studied

Ordini successivi - Incertezza sezione d'urto $|\eta| < 5.0$

Incertezze: ~30% @LO (1 TeV/c) ~7% @NLO (1 TeV/c)

- Uncertainties in PDFs influence cross section measurement
- * Total uncertainty dominated by gluon PDF contribution
- Effects of uncertainty at low x (9-10) and high x (29-30) have been studied

 At high transverse momentum uncertainties on high x gluon PDFs largely dominate * Effect of jet energy scale:

 $\Rightarrow P_{T} = (1+x)P_{T}$

* Effect of jet energy resolution:

* $\sigma(E)/E=a(1+x)/\sqrt{E \oplus b(1+x)}/E \oplus c(1+x)$

★ x=±1%,±5%,±10%

★ x=±10%,±20%

Errore sez. d'urto: Effetto dell'incertezza sulla risoluzi

-		
source	P _T =I TeV/c	P _T =200GeV/C
Jet Energy scale 10% (5%)	57% (29%)	43% (21%)
PDF	13%	2%
Renorm. and Fact. scales (NLO)	7%	6%
Jet Resolution 20% (10%)	4% (2%)	6% (3%)
Stat. (100 pb ⁻¹)	1.2%	2%

Calibration method (HI) verified on CTB data, O(5%) JES error seems reasonable.

See V. Giangiobbe talk

* Many thanks to Sven, Zenon and Paolo

 $\langle \bullet \rangle$

 $\langle \bullet \rangle$