Some First Artemis Standard Model Measurements

Samira Hassani Saclay

1st Artemis Annuel Meeting Chalkidiki, 26-28 September 2007

What we will do with the first data at √s=14 TeV

Detector performance calibration and alignment

- Common strategy to all sub-systems
- Use of Z,W,top for most of the studies
 - Fortunately LHC is a Z,W,top factory!
- For calorimeter calibration
 - J/ ψ ->e⁺e⁻ and Z->e⁺e⁻ for electromagnetic calorimeter
 - Z->I+I- γ mass constraint to set γ energy scale
 - W->jj from Top and Z/ γ + 1 jet events Jet Energy Scale
 - Z→vv、W→lv Missing ET calibration
- For momentum calibration
 - $J/\psi \rightarrow \mu^+\mu$ and $Z \rightarrow \mu^+\mu$ for Muon momentum
- To Determine E/P matching
 - Isolated tracks (W->lv, t decay)
- b-jet tagging efficiency
 - tt events

Precision we expect to have in the beginning Inner tracking alignment 20-200 μm e/m calo Uniformity ~1% e/ γ scale ~1-2 % Jet Energy Scale ~10%

Number of events at the first 10-100 pb⁻¹ of LHC

How many events per experiment at the beginning ?

F. Gianotti, ICHEP06, Moscow, 02/08/2006

Muon Spectrometer Performance

•Quantities measuring the spectrometer performance

- Momentum resolution.
- •Track-reconstruction efficiency.

•Quantities deteriorating the performance

•Chamber inefficiencies.

- •Miscalibration of the MDT chambers.
- •Misalignment of the MDT chambers.
- •Errors of the magnetic-field map.

Measurement of Efficiencies in Data

<u>Tag and Probe Method to</u> <u>determine Efficiencies in Data</u>

 Tag Muon: Track in Inner Detector AND Muon Spectrometer (+Isolation and pT-Cuts)

Probe Muon: Track in Inner
 Detector (+Isolation and pT-Cuts)

•If this di-muon mass is 91GeV ±15Gev and $\Delta \phi$ >2, then the probe muon is assumed to be a real muon: •muon efficiency is given by the fraction of probe muons with tracks in the Muon Spectrometer N. Benekos, M. Schott, A. Wilson

26/09/07

$Z \rightarrow \mu \mu$ Signal Selection

- Main Backgrounds
 - QCD: dominated by the decay of bb→µµ
 - W→µv+jets
 - $Z \rightarrow T T \rightarrow \mu \mu$

Selection cuts

- Track PT > 20 GeV
- Number of Tracks in Halo < 5
- Jet ET in Cone with Radius
 0.5 < 15 GeV
- Track Isolation < 5 GeV
- DiMuonMass:91GeV±15GeV
- Δφ>2

Efficiencies from Data

Statistical Error on the muon reconstruction efficiency

I. Luminosity [pb ⁻¹]	5	10	20	30	40	50
Δε _{ID}	0.28%	0.21%	0.15%	0.12%	0.105%	0.095%

 The background contribution is significant, even for small integrated luminosities

Determination of the pT-Resolution with data

• Idea: Use (again) the Z-Boson Resonance.

• Try to smear the pT of Monte-Carlo generated muons in such a way, that they will **reproduce the measured Z-Boson distribution**.

 $\boldsymbol{\cdot}$ The smearing function can be taken from full simulation

Muon Isolation Efficiency

- Use Tag and Probe Method to determine Muon Isolation Efficiency
- Tag Muon:
 - pT>15-20GeV
 - Isolated
- Probe Muon:
 - pT>15-20GeV
 - Together with Tag Muon gives
 - Δφ>2
 - |91GeV-Мµµ|<30

Test if probe muon is Isolated

From B-physics Working group: J/psi's, Ypsilon expected with first 10 pb⁻¹

					Evei	nts 10 pb-1 including trig and offline efficiency		
		$pp \rightarrow J/\psi$	ν (μ6 μ4) Χ		156 000			
	bb \rightarrow J /ψ (μ6 μ4) X pp \rightarrow Υ (μ6μ4)				78 000 31 000			
	$B^+ ightarrow J/\psi~K^+$				1 600			
		$B^0 \rightarrow J/\psi \ K^{*}(K^+\pi^-)$			900			
2006 10 ⁴ 10 ⁴			Number of events with 10 pb ⁻¹		∙µ6µ4X ct onia I-Yan	Results shown use mu6mu4 triggers At 10 ³¹ cm ⁻² s ⁻¹ we may hav more events with mu4m triggers, but simulation not ready yet, so we sh mu6mu4 here.	1 nu4 ns iow	
	26	2 4	6 8	10 12	14 ass (GeV)	10	0	

From B-physics Working group: J/psi's, Ypsilon with first 10 pb⁻¹

One of first physics measurements may be the ratio of direct J/ ψ to B \rightarrow J/ ψ and direct J/ ψ to Y

- Proper time use to measure ratio J/ψ direct/indirect (B-decays)
- Free from uncertainties in luminosity and trigger efficiencies...
- However needs validation of ID alignment to enable good vertexing
 Wiv/ completies direct and indirect 1/w completies

From B-physics Working group:

Reference channel $B^+ \rightarrow J/\psi K^+$ to be used as ID alignment tester already with 10 pb⁻¹ <u>Petridou</u>, Anastopoulos

B+ proper lifetime fit red/by/osignal, black background, blue all

1st

Table 11: Lifetime fit results based on a luminosity of $13.2pb^{-1}$ World precision today (0.67%)

First Artemis SM Measurement

- For the Muon Spectrometer, we will be able to evaluate the:
 - Muon reconstruction efficiency
 - Muon isolation efficiency
 - Precision of Muon pT-Resolution
 - Muon performance for low pT muon from Jpsi and $\boldsymbol{\Upsilon}$
- For the Inner Detector, we can study the ID alignment using :
 - B+ proper lifetime measurement