VBF Higgs Production at NLO QCD

Terrance Figy IPPP Durham University

1st ARTEMIS Annual Meeting: 27-28 September 2007

Outline

VBF Higgs production at NLO QCD

- VBF Higgs + 2 jets at NLO QCD
- Anomalous Higgs Couplings
- MSSM VBF h(H) + 2 jets
- VBF Higgs + 3 jets at NLO QCD

Goals of Higgs Physics

- Discover the Higgs boson
- Measure its couplings and probe mass generation for gauge bosons and fermions

Fermion masses arise from Yukawa couplings via $\Phi^{\dagger} \rightarrow \left(0, \frac{v+H}{\sqrt{2}}\right)$

$$\mathcal{L}_{\text{Yukawa}} = -\Gamma_d^{ij} \bar{Q}_L^{\prime i} \Phi d_R^{\prime j} - \Gamma_d^{ij*} \bar{d}_R^{\prime i} \Phi^{\dagger} Q_L^{\prime j} + \ldots = -\Gamma_d^{ij} \frac{v+H}{\sqrt{2}} \bar{d}_L^{\prime i} d_R^{\prime j} + \ldots$$
$$= -\sum_f m_f \bar{f} f \left(1 + \frac{H}{v} \right) \tag{1}$$

- Test SM prediction: $\bar{f}fH$ Higgs coupling strength $= m_f/v$
- Observation of $Hf\bar{f}$ Yukawa coupling is no proof that a v.e.v exists

Higgs coupling to gauge bosons

Kinetic energy term of the Higgs doublet field:

$$(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) = \frac{1}{2}\partial^{\mu}H\partial_{\mu}H + \left[\left(\frac{gv}{2}\right)^{2}W^{\mu+}W^{-}_{\mu} + \frac{1}{2}\frac{(g^{2}+g'^{2})v^{2}}{4}Z^{\mu}Z_{\mu}\right]\left(1+\frac{H}{v}\right)^{2}$$

- W,Z mass generation: $m_W^2 = \left(\frac{gv}{2}\right)^2, m_Z^2 = \frac{\left(g^2 + g'^2\right)v^2}{4}$
- WWH and ZZH couplings are generated
- Higgs couples proportional to mass: coupling strength $= 2m_V^2/v \approx g^2 v$ within SM

Measurement of WWH and ZZH couplings is essential for identification of H as agent of symmetry breaking: Without a v.e.v such a trilinear coupling is impossible at tree level.

Assumed errors in fits to couplings:

- QCD/PDF uncertainties
 - $\pm 5\%$ for VBF
 - $\pm 20\%$ for gluon fusion
- luminosity/acceptance uncertainties $-\pm 5\%$

$$\eta = \frac{1}{2}\log\frac{1+\cos\theta}{1-\cos\theta}$$

- Energetic jets in the forward and backward directions $(p_T > 20 \text{ GeV})$
- Higgs decay products between tagging jets
- Little gluon radiation in the central-rapidity region, due to colorless W/Z exchange (central jet veto: no extra jets with $p_T > 20$ GeV and $|\eta| < 2.5$)

Applied Cuts

- Require two hard jets with $p_{Tj} \ge 20 \text{ GeV}, |y_j| \le 4.5$
- Higgs decay: $p_{T\ell} \ge 20 \text{ GeV}, |\eta_{\ell}| \le 2.5, \Delta R_{j\ell} \ge 0.6$ Additionally, the Higgs decay products are required to fall between the tagging jets.

$$y_{j,min} < \eta_{\ell_{1,2}} < y_{j,max}$$

• Backgrounds to VBF are significantly suppressed by requiring a large rapidity separation of the two tagging jets.

$$\Delta y_{jj} = |y_{j_1} - y_{j_2}| > 4$$

Tagging Jet Selection

- p_T -method: Define the tagging jets at the two highest p_T jets in the event.
- E -method: Define the tagging jets as the two highest energy jets in the event.

1st ARTEMIS Annual Meeting: 27-28 September 2007

 $T^{\mu\nu}(q_1, q_2) = \frac{a_1(q_1, q_2)g^{\mu\nu} + a_2(q_1, q_2)[q_1 \cdot q_2g^{\mu\nu} - q_2^{\mu}q_1^{\nu}] + a_3(q_1, q_2)\varepsilon^{\mu\nu\rho\sigma}q_{1\rho}q_{2\sigma}$

- SM-like: a_1
- CP even: a_2
- CP odd: a_3

The QCD corrections to Higgs production via VBF are computed in the presence of anomalous HVV couplings using VBFNLO. ^a

^aT. Figy and D. Zeppenfeld, Phys. Lett. B **591**, 297 (2004)

VBFNLO

- VBFNLO is a parton level Monte Carlo program for Vector Boson Fusion processes.
 - $-V_{jj}, V = Z, W^{\pm}$: C. Oleari, D. Zeppenfeld. Phys. Rev. **D68** (2003) 073005
 - $-W^+W^-jj$: B. Jager, C. Oleari, D. Zeppenfeld. JHEP **0607** (2006) 015
 - ZZjj: B. Jager, C. Oleari, D. Zeppenfeld. Phys. Rev. **D74** (2006) 1113006
 - Hjj: T. Figy, C. Oleari and D. Zeppenfeld, Phys. Rev. D 68, 073005 (2003)
 T. Figy and D. Zeppenfeld, Phys. Lett. B 591, 297 (2004)
 - V. Hankele, G. Klamke, D. Zeppenfeld and T. Figy, Phys. Rev D74 (2006) 095001
- Project members:
 - M. Bähr, G. Bozzi, C. Englert, T. Figy, J. Germer, N. Greiner, K. Hackstein, V. Hankele, B. Jäger, G. Klämke, M. Kubocz, P. Konar, C. Oleari, M. Werner, M. Worek, D. Zeppenfeld
- The program can be downloaded from http://www-itp.physik.uni-karlsruhe.de/~vbfnloweb/VBFNLO.

[JHEP 05 (2004) 064]

- A distinguishing feature of VBF is that at LO no color is exchanged in the t-channel.
- The central-jet veto is based on the different radiation pattern expected for VBF versus its major backgrounds [hep-ph/9412276, hep-ph/0012351]
- The central jet veto can be used to distinguish Higgs production via GF from VBF [hep-ph/0404013]

- The uncertainty in P_{veto} feeds into the uncertainty of coupling measurements at the LHC: $\sigma(H) \times BR(H \to xx) = \frac{\sigma(H)^{SM}}{\Gamma_p^{SM}} \times \frac{\Gamma_p \Gamma_x}{\Gamma}$
- In order to constrain couplings more precisely, the NLO QCD corrections to H_{jjj} are needed.

The NLO Calculation

The ingredients:

• Born: 3 final state partons + Higgs via VBF

- Virtual: Two gauge covariant subsets
 - Vertex + Propagator + Box
 - Pentagon + Hexagon
- Real: 4 final state partons + Higgs via VBF

T. M. Figy, Ph.D. Thesis, UMI-32-34582.

Paper is in preparation with Dieter Zeppenfeld and Vera Hankele of the ITP Karlsruhe.

Boxline Corrections PV reduction used to reduce tensor loop integrals to scalar loop integrals. i(k) $g(q_1)$ $\sum_{V(q_2)}$ $\sum_{V(q_2)}$ $g(q_1)$ $q(k_2)$ a(k) $g(q_1)$ $\sum_{V(q_2)}$ $g(q_1)$ $V(q_2)$ $g(q_1)$ $q(k_2)$ $q(k_2)$ Ş $q(k_2)$ Ş $q(k_1)$ $V(q_2)$ $g(q_1)$ $V(q_2)$ $g(q_1)$ $a(k_2)$ a(k)Ş Ş $\langle V(q_2)$ $V(q_2)$ $g(q_1)$ $V(q_2)$ $g(q_1)$ $q(k_2)$ $a(k_2)$ $\sum_{V(q_2)}$ $\leq V(q_2)$ $g(q_1)$ $g(q_1)$

Hexagons and pentagons

These graphs contribute to the virtual corrections for $qQ \to qQgH$ and are color suppressed.

$$\mathbf{Hex}(\mathbf{1a}) + \mathbf{Pent}(\mathbf{1a}) = \begin{cases} \begin{pmatrix} a & b & b & b & b & b \\ \hline a & \hline a & \hline a & b & \hline a &$$

To a first approximation, we may neglect the contribution of the hexagons and pentagons.

The term $\propto 1/d_G$ when integrated over PS gives rises to a soft divergence. This soft divergence is cancelled against the soft divergence arising from the hexagons and pentagons. For consistency, this term is also neglected.

NLO parton level Monte Carlo Program

- The dipole subtraction method of Catani and Seymour is used to regulate the IR divergences of the real emission corrections [hep-ph/9605323].
- Have introduced a cut, α , on the PS of the dipoles as a consistency check [hep-ph/0307268].
- Born amplitudes are calculated numerically using the helicity amplitude formalism.
- Real amplitudes were generated using MADGRAPH.
- Identical particle effects have been neglected.
- *b*-quarks have been included for neutral current processes.
- The Monte Carlo integration is performed with a modified form of VEGAS.
- CTEQ6M PDFs are used at NLO with $\alpha_s(M_Z) = 0.118$ while CTEQ6L1 PDFs are used at LO with $\alpha_s(M_Z) = 0.130$.
- SM parameters are computed using LO electroweak relations with M_Z, M_W , and G_F as inputs.
- Jets are reconstructed from final-state partons by the use of the k_T algorithm with D = 0.8.

VBF Cuts

- k_T algorithm: Require at least 3 hard jets with $p_{Tj} \ge 20$ GeV and $|y_j| \le 4.5$.
- Tagging jets: 2 jets of $p_{Tj}^{\text{tag}} \ge 30 \text{ GeV}$ and $|y_j^{\text{tag}}| \le 4.5$.
- Higgs decay products:

$$p_{T\ell} \ge 20 \text{ GeV}, \qquad |\eta_\ell| \le 2.5, \qquad \bigtriangleup R_{j\ell} \ge 0.6$$

$$\tag{2}$$

$$y_{j,min}^{\text{tag}} + 0.6 < \eta_{\ell_{1,2}} < y_{j,max}^{\text{tag}} - 0.6.$$
(3)

• Rapidity gap and opposite detector hemispheres:

$$y_j^{\text{tag 1}} \cdot y_j^{\text{tag 2}} < 0 \tag{4}$$

$$\Delta y_{jj} = |y_j^{\text{tag 1}} - y_j^{\text{tag 2}}| > 4 \tag{5}$$

• Invariant mass of tagging jets:

$$m_{jj} = \left(p_j^{\text{tag 1}} + p_j^{\text{tag 2}}\right)^2 > 600 \text{ GeV}$$
(6)

Final Remarks

- Various VBF processes have been calculated at NLO QCD are available: Hjjj,Hjj,Vjj, and VVjj.
- Scale dependence is reduced for the total cross section and distributions at NLO.
- K factors are phase space dependent. Shapes change at NLO!
- If we are too understand the mechanism for electroweak symmetry breaking, we need to consider higher-order effects.
- Theorists must not tell experimentalists they should include loops in calculations and not provide the tools.

The Dipole Subtraction Method

Soft and collinear singularities of the real emission corrections are regulated by use of the dipole subtraction method of Catani and Seymour [hep-ph/9605323].

$$\begin{split} \sigma_{ab}^{NLO}(p,\bar{p}) &= \sigma_{ab}^{NLO\{4\}}(p,\bar{p}) + \sigma_{ab}^{NLO\{3\}}(p,\bar{p}) \\ &+ \int_{0}^{1} dx [\hat{\sigma}_{ab}^{NLO\{3\}}(x,xp,\bar{p}) + \hat{\sigma}_{ab}^{NLO\{3\}}(x,p,x\bar{p})] \end{split}$$

$$\sigma_{ab}^{NLO\{4\}}(p,\bar{p}) = \int_{4} [d\sigma_{ab}^{R}(p,\bar{p})_{\epsilon=0} - d\sigma_{ab}^{A}(p,\bar{p})_{\epsilon=0}]$$

$$\sigma_{ab}^{NLO\{3\}}(p,\bar{p}) = \int_{3} [d\sigma_{ab}^{V}(p,\bar{p}) + d\sigma_{ab}^{B}(p,\bar{p}) \otimes \mathbf{I}]_{\epsilon=0}$$

$$\int_{0}^{1} dx \hat{\sigma}_{ab}^{NLO\{3\}}(x, xp, \bar{p}) = \sum_{a'} \int_{0}^{1} dx \int_{3} \{ d\sigma_{a'b}^{B}(xp, \bar{p}) \otimes [\mathbf{P}(x) + \mathbf{K}(x)]^{aa'} \}_{\epsilon=0}$$