PARTNER Final Project Meeting

High-Gradient Linacs for Hadrontherapy

Silvia Verdú Andrés

Former PARTNER Early Stage Researcher in «Novel Accelerator Concepts for Hadrontherapy» TERA Foundation – IFIC (CSIC/UV) April 2009 – March 2012

CNAO (Pavia, Italy) – September 14, 2012

The motivation

The hadrontherapy community would benefit from i) compact, ii) reliable accelerators with the iii) appropriate beam performances for tumour treatment with ions.

Accelerators for Hadrontherapy

Characteristics of a therapeutical beam

Accelerators for Hadrontherapy

Treating moving organs requires...

Fast Cycling machine (high repetition rate ~ 200-300 Hz)

> Tumour MULTIPAINTING

Accelerators for Hadrontherapy

The cyclinac: cyclotron + high frequency linac

Machine Performances

Structure		Operation		
# klystrons/unit	1	-		$22.24 \text{ M}//\text{m}/\Gamma = 170 \text{ M}//\text{m}$
# tanks/unit	4	E ₀		$32-34 \text{ IVIV/m} (E_{\text{max}} = 1/0 \text{ IVIV/m})$
# cells/tank	18	P _{ins}	talled	192 MW
Total length	24 m	P _{co}	nsumption	550 kW (2.2 μs at 300 Hz)

- Reduced power requirement
- Modularity:
 - Implement facility in different phases
 - Ease maintainance

Machine Performances: i) Compactness

Structure					
# klystrons/unit	1				
# tanks/unit	4				
# cells/tank	18				
Total length	24 m				

Operation					
E ₀	32-34 MV/m (E _{max} = 170 MV/m)				
P _{installed}	192 MW				
P _{consumption}	550 kW (2.2 μs at 300 Hz)				

Objectives

- Operation limit for high-freq cavities → BreakDownRate
 BDR
- <u>Scaling laws</u> (E_s, S_c, pulse length, temperature, frequency)
- Applying found limit to <u>future designs</u>
 - ensure reliable operation
 - <u>optimize</u> RF structures (efficiency, length, cost)

test cavities

S-band: 3 GHz

(electron linacs conventional radiotherapy)

One 3 GHz TERA Single-Cell Cavity → already high-power tested

test cavities

S-band: 3 GHz

(electron linacs conventional radiotherapy)

■ One 3 GHz TERA Single-Cell Cavity → already high-power tested

<u>C-band</u>: 5.7 GHz

(reduce size & cost)

- Three 5.7 GHz TERA Single-Cell Cavities
 - 2 conventional machining \rightarrow tuning ongoing
 - 1 diamond machining \rightarrow brazing

One 5.7 GHz Frascati Multi-Cell Traveling-Wave Structure
 → already high-power tested

3 GHz Single-Cell Cavity

CLIC Test Facility (CTF) at CERN

High-power tests completed in March 2012

Main goal:

Direct measurement of breakdown rate

for 2.2 μs-long RF pulses

at same operation field of CABOTO

5.7 GHz Multi-Cell Traveling-Wave Structure

Prototype for the SPARC energy upgrade 5.7 GHz copper traveling-wave structure

High-power tests completed in December 2010

Breakdown rate measured for the SPARC prototype can be **rescaled** to CABOTO cells

Machine Performances: ii) Reliability

Experiment	BDR [bpp/m]	Sc,max [MW/mm ²]	t _{pulse} [μs]
3 GHz test cavity	3x10 ⁻⁶	0.87	2.2
5.7 GHz prototype	1.5x10 ⁻⁵	1.67	0.2

The expected breakdown rate for CABOTO [which presents sqrt(Sc,max)/E₀ = 0.024] operating 2.2-ms RF long pulses at a maximum field E₀ of 34 MV/m is about 10⁻⁶ bpp/m.

iii) Beam Performances

Fast active energy modulation

Power distribution allows 2 mm-range steps within 1-2 ms. No absorbers.

iii) Beam Performances

iii) <u>Beam performances</u>

b) Output beam intensity

Assuming an output beam intensity of 100 nA at the cyclotron exit, CABOTO could provide **about 2 nA** with the appropriate energy for therapy.

c) High repetition rate

300 Hz

Summary of CABOTO performances

- **Reduced power requirement:** 550 kW (for 3.2 μs-pulse at 300 Hz)
- Compactness:

24 meters-long linac

- **Reliability at operation field:** *about 10⁻⁶ bpp/m*
- Beam performances:
 - ✓ Fast active energy modulation (within 1-2 ms):
 ✓ Energy range for ¹²C⁶⁺: 150-410 MeV/u
 ✓ Energy step: 2 mm-range in water (spot scanning technique)

✓ <u>High repetition rate</u>: 300 Hz
 (+ 3D feedback system → tumour multipainting & moving organs treatment)

Modularity

+ Possibility to accelerate H₂

Next steps

 High-gradient test of 5.7 GHz Single-Cell SW Cavities (different machinings) in A.D.A.M. (Geneva, CH) at the end of 2012.

 Design, prototyping and high-power test of
 Multi-Cell SW structure at selected frequency (depending on experience)

• Further studies on CABOTO :

effects of jitter on beam performances, energy selection system, etc.

Acknowledgemen ts ENLIGHT – PARTNER CERN INFN-LNF KEK Vodafone Foundation (Italy)

