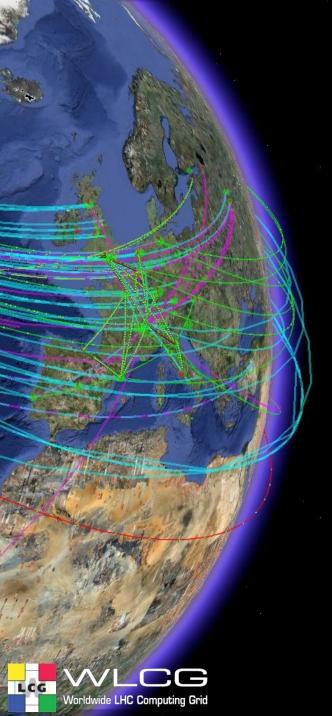
Grid Middleware

David Smith IT Grid Technology Group, CERN

July 2012 Openlab Summer Student Lecture




Overview

- Grid Computing?
- Constraints
- EMI
 - Overview
 - Security Model
 - Data Management
 - Why is this difficult?
- Future

Overview

- If you want to use EMI read the user documentation:
- <u>http://www.eu-</u>
 <u>emi.eu/documentation/</u>
- There is NO way around it $\textcircled{\odot}$
- Unless you are in an experiment

Impossible to discuss all components

- Illustrate complexity
- Some Security Details
- Bit of Data Management

What is a Computing Grid?

- There are many conflicting definitions
 - Has been used for several years for marketing...
 - Now Cloud is more common....
- Ian Foster and Karl Kesselman
 - "coordinated resource sharing and problem solving in dynamic, multiinstitutional virtual organizations."
 - These are the people who started globus, the first grid middleware project
- From the user's perspective:
 - I want to be able to use computing resources as I need
 - I don't care who owns resources, or where they are
 - Have to be secure
 - My programs have to run there
- The owners of computing resources (CPU cycles, storage, bandwidth)
 - My resources can be used by any authorized person (not for free)
 - Authorization is not tied to my administrative organization
- NO centralized control of resources or users

Constraints?

- The world is a fairly heterogeneous place
 - Computing services are extremely heterogeneous
- Examples:
 - Batch Systems (controlling the execution of your jobs)
 - LSF, PBS, TorQue, Condor, SUN-GridEngine, BQS,
 - Each comes with its own commands and status messages
 - Storage: Xroot, CASTOR, dCache, DPM, STORM,+++
 - Operating Systems:
 - Windows, Linux (5 popular flavors), Solaris, MacOS,....
 - All come in several versions
 - Site managers
 - Highly experienced professionals
 - Physicists forced to do it
 - Summer students doing it for a short time......

Software Approach

Identify an AAA system that all can agree on

- Authentication, Authorization, Auditing
- That doesn't require local user registration
- That delegates "details" to the users (Virtual Organizations)
- Define and implement abstraction layers for resources
 - Computing, Storage, etc.
- Define and implement a way to announce your resources
- Build high level services to optimize the usage
- Interface your applications to the system

European Middleware Initiative (EMI)

EMI is partially funded by the European Commission under Grant Agreement RI-261611

Primary Objectives

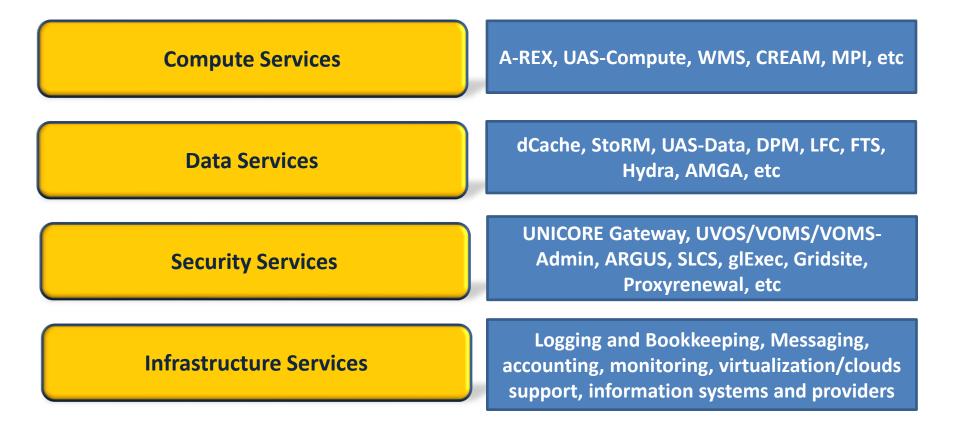
Consolidate

Consolidate the existing middleware distribution simplifying services and components to make them more sustainable (including use of off-the-shelf and commercial components whenever possible)

Evolve

Evolve the middleware services/functionality following the requirement of infrastructure and communities, mainly focusing on operational, standardization and interoperability aspects

Support


Reactively and proactively maintain the middleware distribution to keep it in line with the growing infrastructure usage

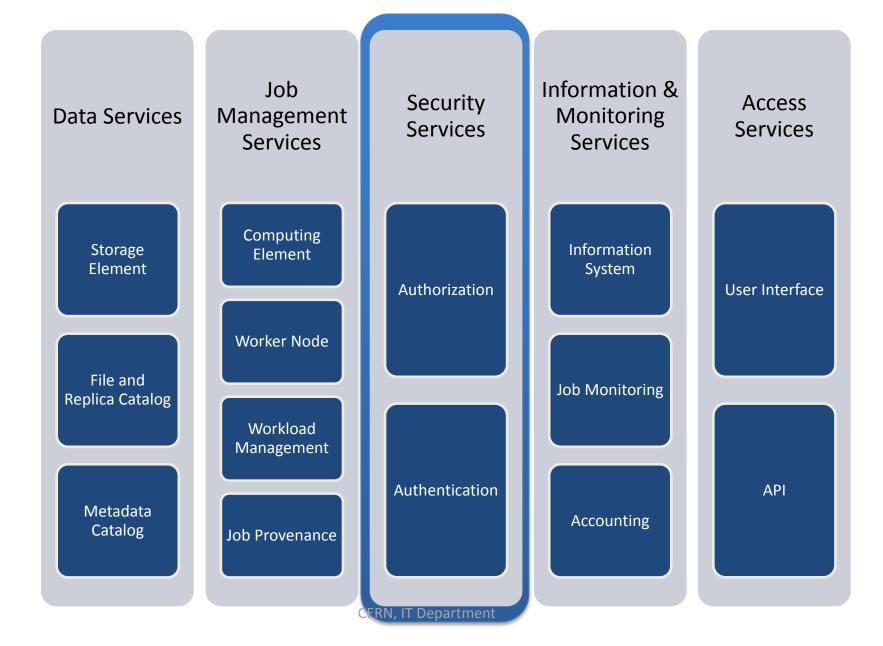
Partners (24)

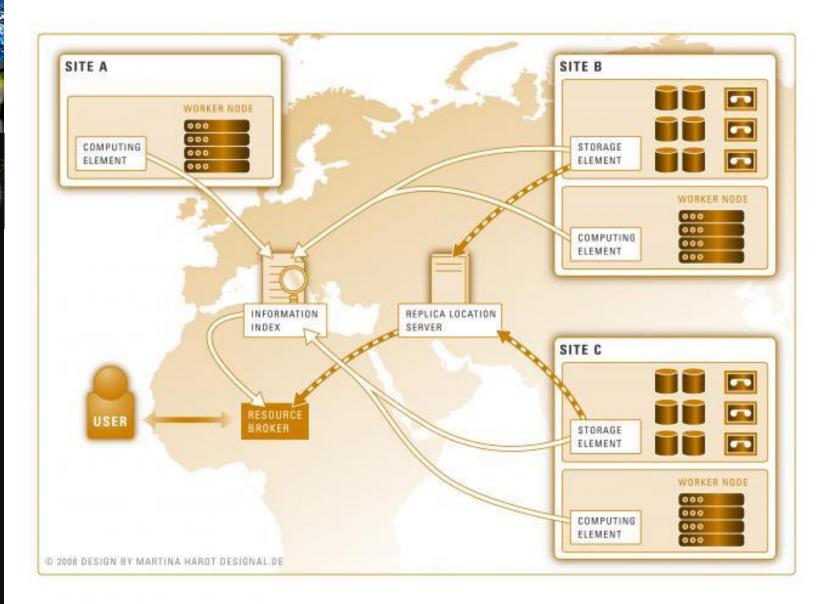
Technical Areas



EMI Middleware Distribution

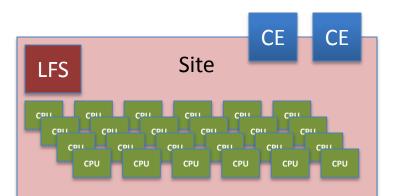
- Combines components from different providers
 - Condor, LCG-2 and Globus 5
 - ARC
 - gLite (from EDG, EGEE I, II & III projects)
 - dCache, StoRM, UNICORE, Nagios probes, ...
- After prototyping phases in 2004 and 2005
 - convergence with LCG-2 distribution reached in May 2006
 - gLite 3.0, 3.1 & 3.2
 - EMI Project starts 2010
- Focus on providing a deployable MW distribution for EGI production service





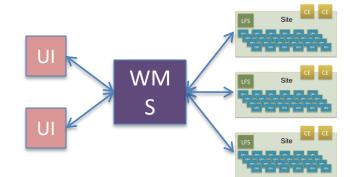
EMI Middleware

The Big Picture

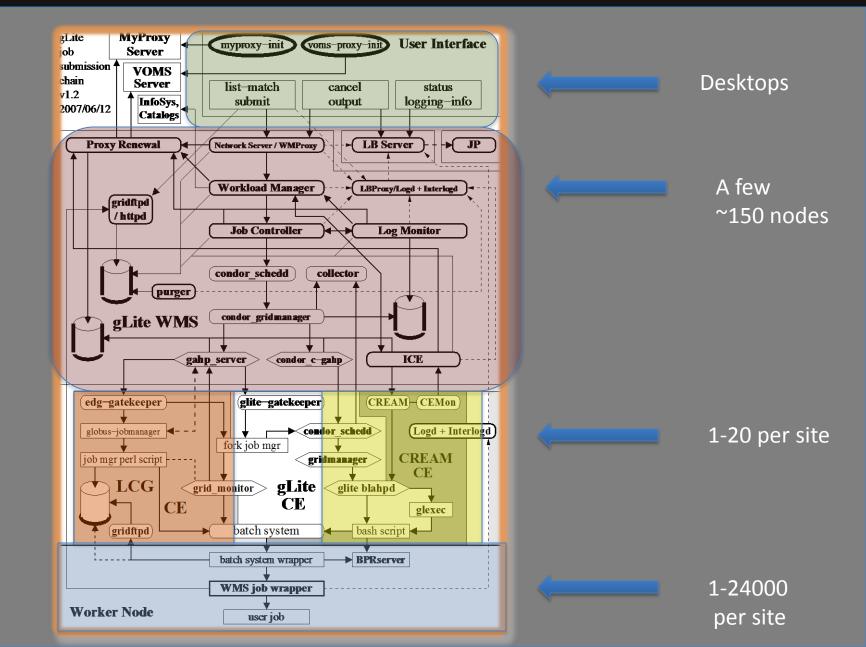


Worldwide LHC Computing Grid

Computing Access

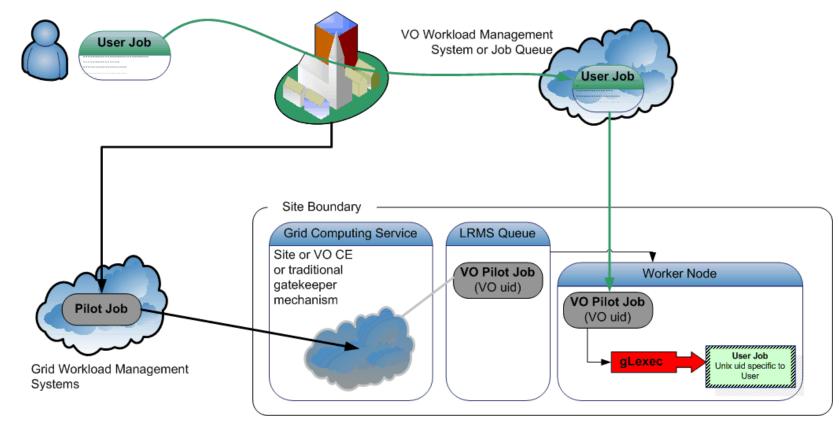

- Computing Elements (CE)
 - gateways to farms

- On EGI from EMI:
 - LCG-CE (37instances)
 - LEGACY (this was the workhorse until 2 years ago)
 - ARC-CE (11 instances)
 - NorduGrid compute element
 - CREAM-CE (250 instances)
 - Significant investment on production readiness and scalability
 - Handles direct submission (pilot job friendly)
 - SL5/SL6
 - ICE interfaces available (in the future EMI-ES); supports parameter passing from grid <-> batch


Workload Management

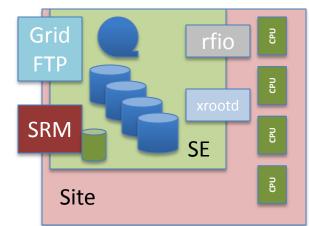
- EMI WMS/LB
 - Matches resources and requests
 - Including data location
 - Handles failures (resubmission)
 - Manages complex workflows
 - Tracks job status
- EMI WMS/LB (149 Instances)
 - Fully supports LCG-CE, CREAM-CE and ARC-CE
 - Early versions had some WMS<->CREAM incompatibilities

Workload Management (compact)



Job Description Language

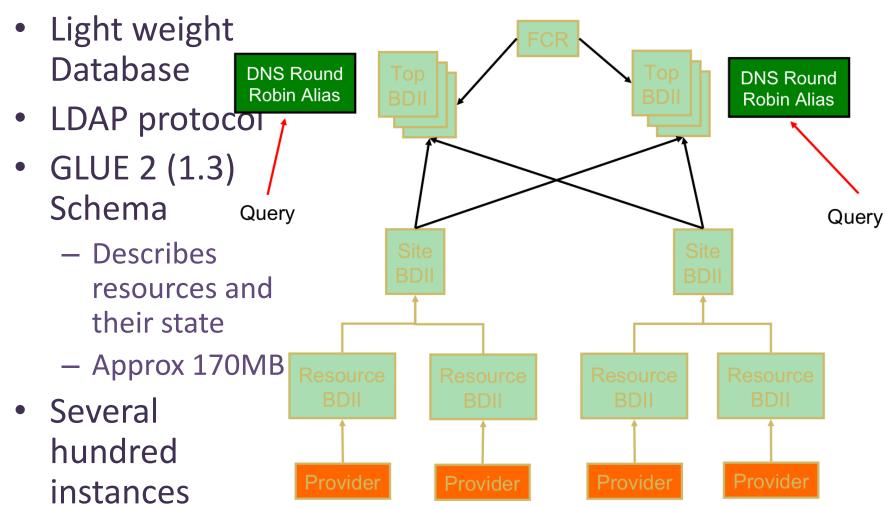
- [
- Executable = "my_exe";
- StdOutput = "out";
- StdError = "err";
- Arguments = "a b c";
- InputSandbox = {"/home/giaco/my_exe"};
- OutputSandbox = {"out", "err"};
- Requirements = Member(
- other.GlueHostApplicationSoftwareRunTimeEnvironment,
 - "ALICE3.07.01"
-);
- Rank = -other.GlueCEStateEstimatedResponseTime;
- RetryCount = 3

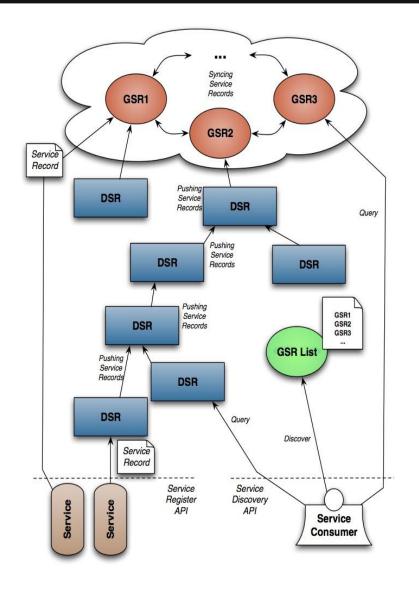

MultiUserPilotJobs

- Idea: Matching resources and jobs by Vos
- Pilot is a placeholder for the real job
- Identity is changed on demand on the WN
 Virtual Organisation

Data Management

- Storage Elements (SEs)
 - External interfaces based on SRM 2.2 and gridFTP
 - Local interfaces: POSIX, dcap, secure rfio, rfio, xrootd
 - DPM (245)
 - dCache (80)
 - STORM (50)
 - BestMan (50)
 - CASTOR (20)

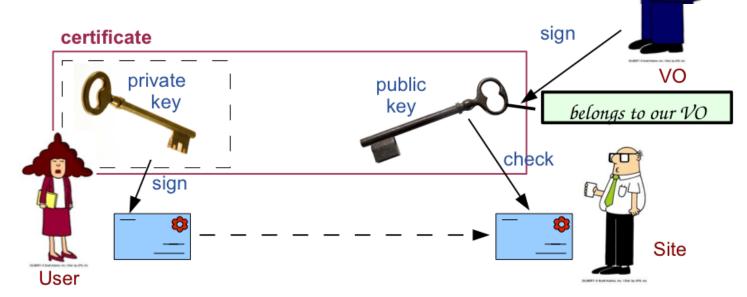

- − "ClassicSE" (50) \rightarrow legacy since 3 years....
- Catalogue: LFC (local and global)
- File Transfer Service (FTS)
- Data management clients gfal/LCG-Utils


Information System

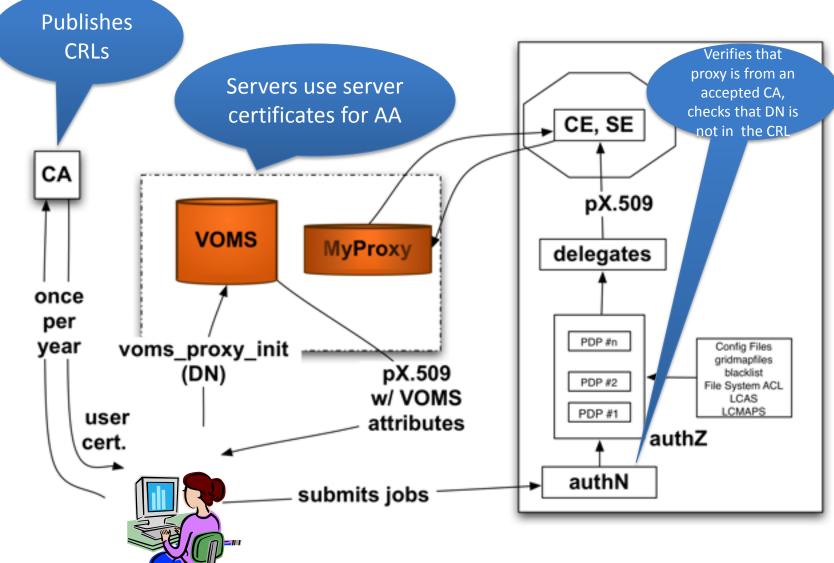
• BDII

New system: EMIR

Authentication


- Authentication is based on X.509 PKI infrastructure (Public Key)
 - Certificate Authorities (CA) issue (long lived) certificates identifying individuals (much like a passport)
 - Commonly used in web browsers to authenticate to sites
 - Trust between CAs and sites is established (offline)
 - In order to reduce vulnerability, on the Grid user identification is done by using (short lived) proxies of their certificates
- Short-Lived Credential Services (SLCS)
 - issue short lived certificates or proxies to its local users
 - e.g. from Kerberos or from Shibboleth credentials
- Proxies can

- Identify a user to a service
- Be delegated to a service such that it can act on the user's behalf
- Be renewed by external store (MyProxy)
- Include additional attributes \rightarrow Authorization


Public Key Based Security

- How to exchange secret keys?
 - 340 Sites (global)

- With hundreds of nodes each?
- 200 User Communities (non local)
- 10000 Users (global)
- And keep them secret!!!

Security - overview

.HC Com

Authorization

- VOMS is now a de-facto standard
 - Attribute Certificates provide users with additional capabilities defined by the VO.
 - Basis for the authorization process
- Job isolation: currently via mapping to a local user on the resource
 - glexec changes the local identity (based on suexec from Apache)
- Designing an authorization service with a common interface agreed with multiple partners
 - Eventual uniform implementation of authorization in EMI services
 - Easier interoperability with other infrastructures
 - Prototype being prepared now

CAs and all that

- Certification Authorities
 - And Registration Authorities

- have to be recognized by the International Grid Trust Federation (<u>http://www.igtf.net/</u>)
- federation of the APGridPMA, The Americas Grid
 PMA and EUGridPMA
 - http://www.eugridpma.org/members/worldmap/
- igtf maintains a list of accredited CAs
 - their public keys and URL for getting CRLs
- CRL Certificate Revocation Lists
 - contain "bad" DNs from a CA to block users

What's in a Credential?

Version: 3 (0x2)	
Serial Number: 5 (0x5)	has issued it
Signature Algorithm: MaswithksAEncryption	
Issuer: C=CH, O=CERN, OU=cern.ch, CN=CERN CA	
Validity	Ctout and an data
Not Before: Sep 11 11:37:57 2010 GMT	Start and end date
Not After : Nov 30 12:00:00 2011 GMT	
Subject: O=Grid, O=CERN, OU=cern.ch, CN=John Doe	
Subject Public Key Info:	DN == Identity
Public Key Algorithm: rsaEncryption	
RSA Public Key: (1024 bit)	
Modulus (1024 bit):	
00:ab:8d:77:0f:56:d1:00:09:b1:c7:95:3e:ee:5d:	
c0:af:8d:db:68:ed:5a:c0:17:ea:ef:b8:2f:e7:60:	
2d:a3:55:e4:87:38:95:b3:4b:36:99:77:06:5d:b5:	
4e:8a:ff:cd:da:e7:34:cd:7a:dd:2a:f2:39:5f:4a:	Public Key
Oa:7f:f4:44:b6:a3:ef:2c:09:ed:bd:65:56:70:e2:	
a7:0b:c2:88:a3:6d:ba:b3:ce:42:3e:a2:2d:25:08:	
92:b9:5b:b2:df:55:f4:c3:f5:10:af:62:7d:82:f4:	
0c:63:0b:d6:bb:16:42:9b:46:9d:e2:fa:56:c4:f9:	
56:c8:0b:2d:98:f6:c8:0c:db	
Exponent: 65537 (0x10001) X509v3 extensions:	
Netscape Base Url:	
http://home.cern.ch/globus/ca	
Netscape Cert Type:	
SSL Client, S/MIME, Object Signing	
Netscape Comment:	
necocape conment.	
For DataGrid use only	
For DataGrid use only	
Netscape Revocation Url:	
Netscape Revocation Url: http://home.cern.ch/globus/ca/bc870044.r0	
Netscape Revocation Url: http://home.cern.ch/globus/ca/bc870044.r0 Netscape CA Policy Url:	
Netscape Revocation Url: http://home.cern.ch/globus/ca/bc870044.r0 Netscape CA Policy Url: http://home.cern.ch/globus/ca/CPS.pdf	
Netscape Revocation Url: http://home.cern.ch/globus/ca/bc870044.r0 Netscape CA Policy Url: http://home.cern.ch/globus/ca/CPS.pdf gnature Algorithm: md5WithRSAEncryption	
Netscape Revocation Url: http://home.cern.ch/globus/ca/bc870044.r0 Netscape CA Policy Url: http://home.cern.ch/globus/ca/CPS.pdf gnature Algorithm: md5WithRSAEncryption 30:a9:d7:82:ad:65:15:bc:36:52:12:66:33:95:b8:77:6f:a6:	
Netscape Revocation Url: http://home.cern.ch/globus/ca/bc870044.r0 Netscape CA Policy Url: http://home.cern.ch/globus/ca/CPS.pdf gnature Algorithm: md5WithRSAEncryption 30:a9:d7:82:ad:65:15:bc:36:52:12:66:33:95:b8:77:6f:a6: 52:87:51:03:15:6a:2b:78:7e:f2:13:a8:66:b4:7f:ea:f6:31:	
Netscape Revocation Url: http://home.cern.ch/globus/ca/bc870044.r0 Netscape CA Policy Url: http://home.cern.ch/globus/ca/CPS.pdf ignature Algorithm: md5WithRSAEncryption 30:a9:d7:82:ad:65:15:bc:36:52:12:66:33:95:b8:77:6f:a6:	

RSA

- n = p . q (p, q prime)
- $\phi(n) = (p-1)(q-1)$
- 1<e<φ(n), gcd(e, φ(n)) = 1
- $d = e^{-1} \pmod{\phi(n)}$
- (n, e) is the public key
- (n, d) is the private key

e.g. for a message m

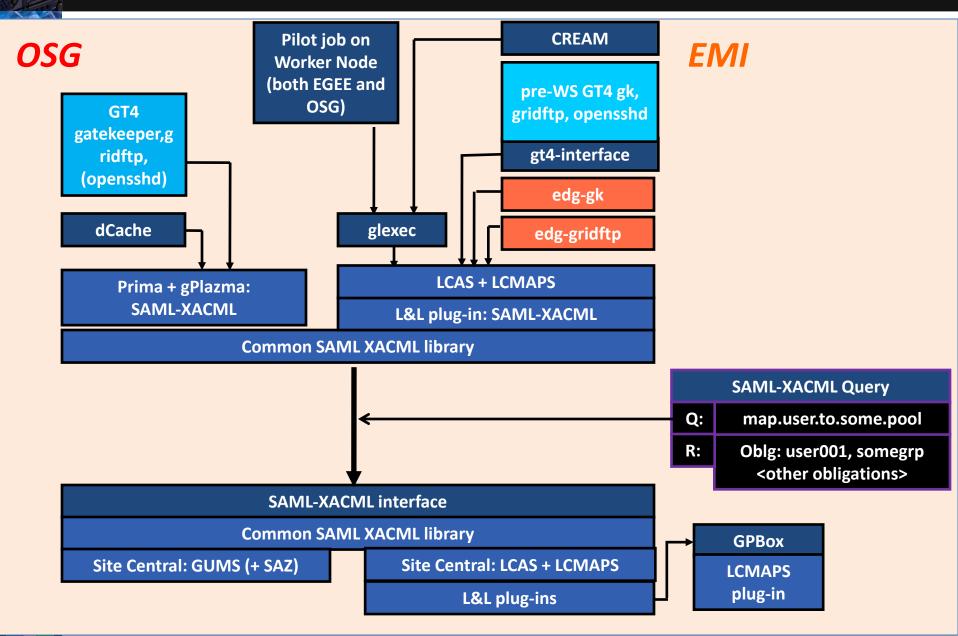
- c = m^e (mod n) (operation with public key)
- m = c^d (mod n) (operation with private key)

VOMS Proxy?

- VO membership, Group and Role
 - authorization based on FQAN
 - Fully Qualified Attribute Name
 - <group name>[/Role=<role name>]
 - example: /cms/SusySearch/Role=Simulation
 - VO manages VO group and role membership
 - User requests attributes
- Delegation
- Time limited
 - for long running tasks \rightarrow MyProxy Service
 - renews proxies, known services can retrieve new proxies

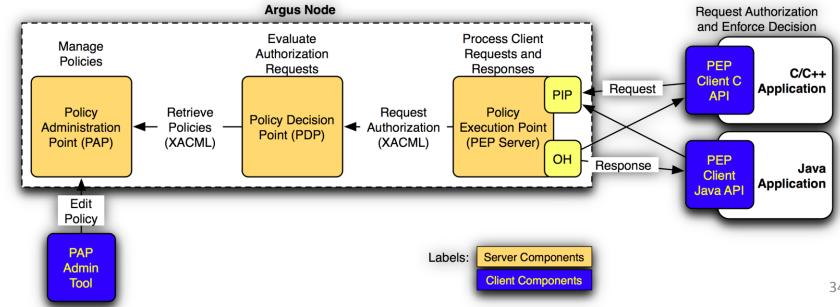
Problems with grid Security

- Public Key infrastructure
 - all CAs have to provide updated CRLs in time
- Computational overhead
 - each authentication costs about 7 round trips
 - Roughly 10ms computing
- gsi version of x509 makes session reuse difficult
 - Overhead for "small" operations
- User handling of private key (confidential)
- The "error phase space" is large
 - needs expertise to debug


Problems with grid Security 2

- In competition with existing systems
 - Shibboleth Identity Provider, Kerberos
 - Interfaces have been created KCA etc.
 - but not 1:1 mapping
- Enforcing site wide policies is difficult
 - each service handles banning independently
- VOMS
 - very flexible (maybe too flexible)
 - multiple roles
 - but no clear discrimination between data management and job prio
 - the semantic is not defined (what can I do with the role)
 - mapping to underlying fabric difficult
 - Often UNIX group and user IDs.....
 - Different infrastructures and services use different implementation
 - Interoperability !!!
 - Sysadmins are challenged

Common Authentication interface


ARGUS: Authorization

System for consistent authorization

- Based on global and site wide policies
- PAP Policy Administration Point
- PDP Policy Decision Point

Jwide LHC Com

- PEP Policy Enforcement Point
- EES Execution Environment Service mapping for users
- System to combine global and local policies

Will it be easy?

• XACML is too complex \rightarrow SPL

simplified policy language

<xacml:PolicySet xmIns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os" PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policycombining-algorithm:first-applicable" PolicySetId="9784d9ce-16a9-41b9-9d26-b81a97f93616" Version="1">

<xacml:Target>

<xacml:Resources>

<xacml:Resource>

<xacml:ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

<xacml:AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">.*</xacml:AttributeValue>

<xacml:ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

</xacml:ResourceMatch>

</xacml:Resource>

</xacml:Resources>

</xacml:Target>

<xacml:PolicyIdReference>public_2d8346b8-5cd2-44ad-9ad1-0eff5d8a6ef1</xacml:PolicyIdReference>

</xacml:PolicySet>

<xacml:Policy xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os" PolicyId="public_2d8346b8-5cd2-44ad-9ad1-0eff5d8a6ef1" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable" Version="1">

<xacml:Target>

<xacml:Actions>

<xacml:Action>

<xacml:ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

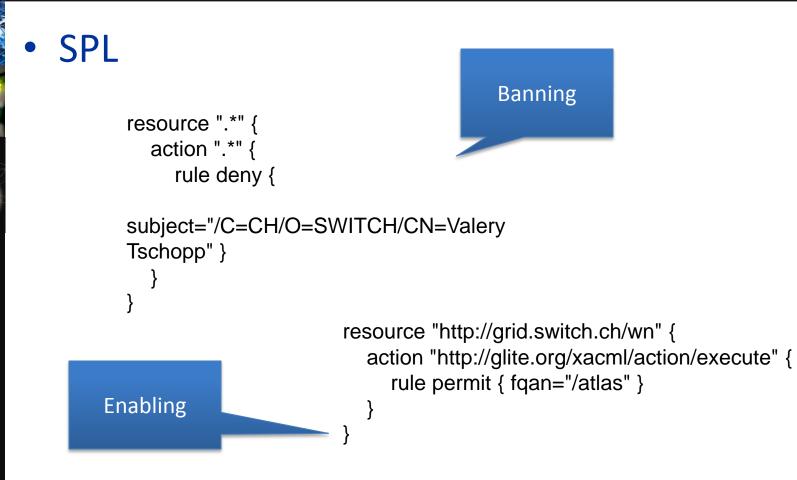
<xacml:AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">.*</xacml:AttributeValue>

<xacml:ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"</p>

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

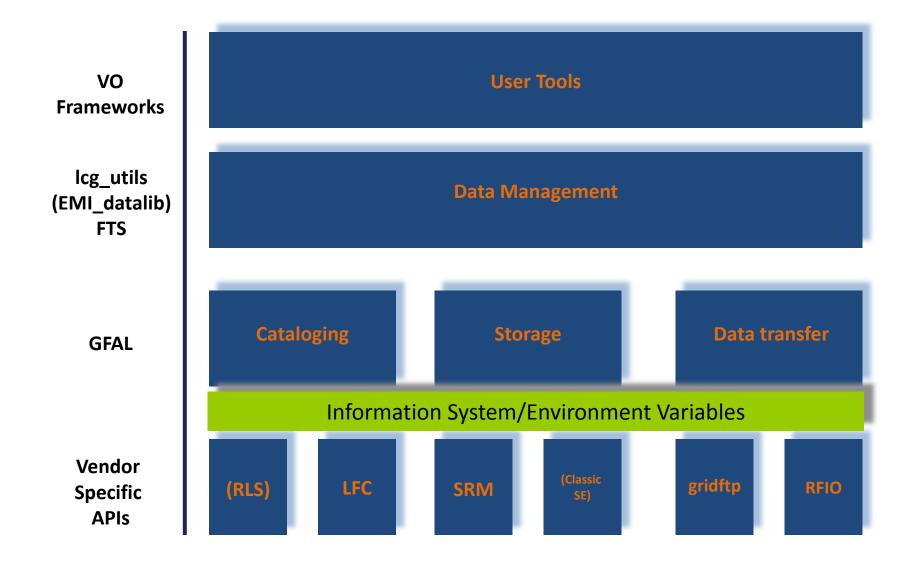
</xacml:ActionMatch>

</xacml:Action>

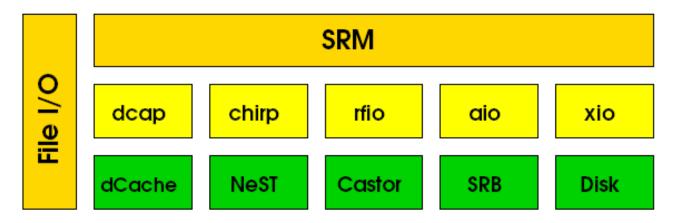

</xacml:Actions>

</xacml:Target>

<xacml:Rule Effect="Deny" RuleId="43c15124-6635-47ee-b13c-53f672d0de77">


Will it be easy?

Data Management



General Storage Element

- Storage Resource Manager (SRM)
 - hides the storage system implementation (disk or active tape)
 - handles authorization
 - translates SURLs (Storage URL) to TURLs (Transfer URLs)
 - disk-based: DPM, dCache,+; tape-based: Castor, dCache
 - Mostly asynchronous

LCG

File I/O: posix-like access from local nodes or the grid
 GFAL (Grid File Access Layer)

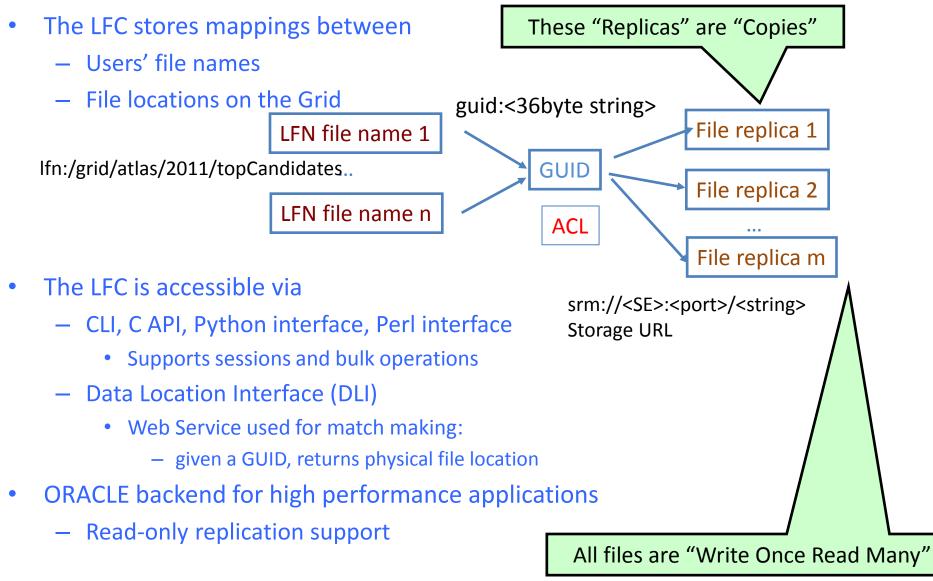
38

Approach to SRM

- An abstraction layer for storage and data access is necessary
 - Guiding principle:
 - Non-interference with local policies
- Providing all necessary user functionality and control
 - Data Management
 - Data Access
 - Storage management
 - Control:
 - Pinning files
 - Retention Policy
 - Space management and reservation
 - Data Transfers
- Grid enabled and based on current technology
 - Interface technology (gSOAP)
 - Security Model (gsi security)
 - To integrate with the grid infrastructure

Motivation (for HEP)

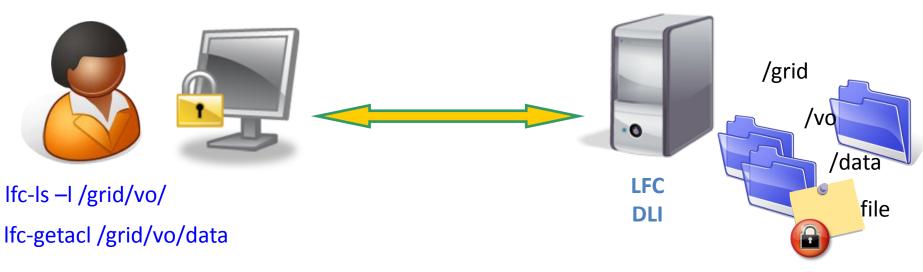
Distributed processing model


- Data Management, Data Access, Storage Resource Management
- User community is experiment centric
 - No longer institute centric
 - Requires radical change in Authentication/Authorisation technology
- But:
- Many existing and heavily used heterogeneous (local) storage systems
 - Different models and implementations for
 - local storage hierarchy
 - transparent/explicit
 - Synchronous/Asynchronous operations
 - Cluster file system based / disk server based
 - Plethora of Data Access Clients
 - Authorization and authentication
 - Often local, mostly UID/GID or AFS like ACLs, Kerberos, +++
 - Wide area transfers
 - FTP doors, proprietary
 -
 - Deeply integrated with local computing fabrics
 - Representing decade long, massive investment
 - Have to respect local policies and resource allocations

LCG "File" Catalog

LFC features

Hierarchical Namespace GSI security


Permissions and ownership

ACLs (based on VOMS)

Virtual ids

- Each user is mapped to (uid, gid)
- **VOMS** support
 - To each VOMS group/role corresponds a virtual gid

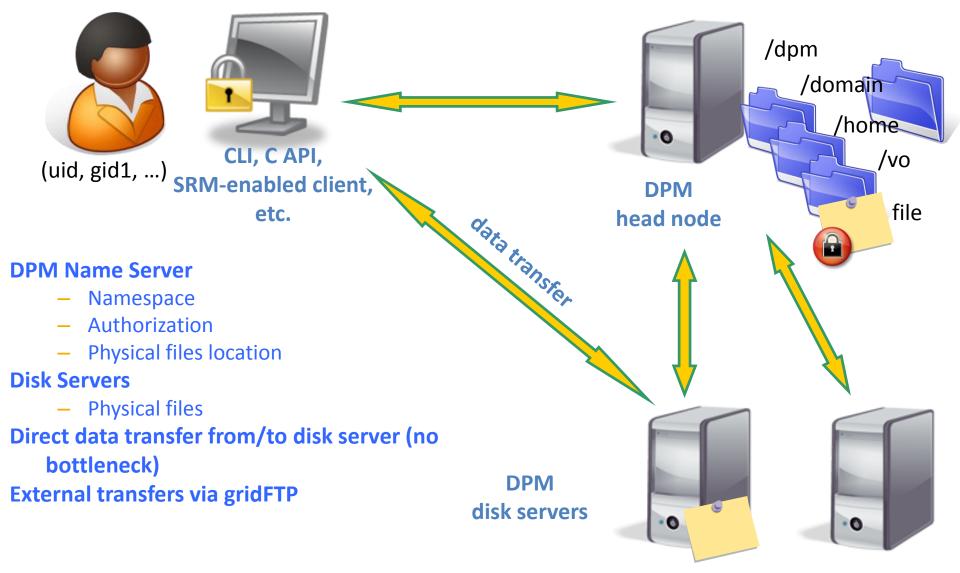
Bulk operations

DPM

- Disk Pool Manager
 - Manages storage on disk servers

Decouples local namespace from SURL namespace

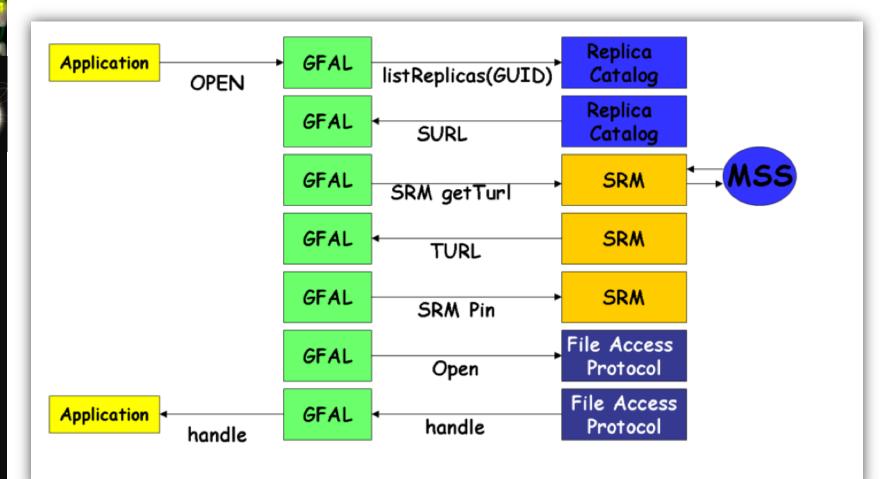
- allows to add/remove disks in an invisible way
- SURL → TURL translation
- Transport URL: <protocol>://<string>
 - gsiftp://diskserver001.cern.ch/data/atlas/file400001
- SRM support
 - 2.2 (released in DPM version 1.6.3)
- GSI security
- ACLs
- VOMS support
- Secondary groups support (see LFC)
- Replication for hot files


DPM strengths

- Easy to use
 - Hierarchical namespace
 - \$ dpns-ls /dpm/cern.ch/home/vo/data
 - Many protocols supported (including HTTPS, xroot, S3, NFS 4)
- Easy to administrate
 - Easy to install and configure
 - Low maintenance effort
 - Easy to add/drain/remove disk servers
- Target: small to "medium" sites (34PB total)
 Single disks --> several disk servers

DPM: user's point of view

GFAL & lcg_util


- Data management access libs.
 - Shield users from complexity
 - Interacts with information system, catalogue and SRM-SEs

GFAL

- Posix like C API for file access
- SRMv2.2 support
- User space tokens correspond to
 - A certain retention policy (custodial/replica)
 - A certain access latency (online/nearline)
- http://www.youtube.com/watch?v=dgyyFJvyK9g
- lcg_util (command line + C API)
 - Replication, catalogue interaction etc.

gfal: what really happens

• example: Open a file

gfal: some api calls

}

- example:
- similar to POSIX
 - but different

void call_gfal_read(char *filename, size_t block_size)

int FD; //file descriptor int rc; //error code int array_size= block_size/sizeof(int); int* readValues= new int[array_size];

```
}
cout << "File is successfully opened\n";</pre>
```

if ((rc=gfal_read (FD, readValues, block_size)) != block_size) {
 if (rc < 0) perror("error in gfal_read");
 else cerr << "gfal_read returns " << rc << endl;</pre>

```
cout << "File is successfully read\n";</pre>
```

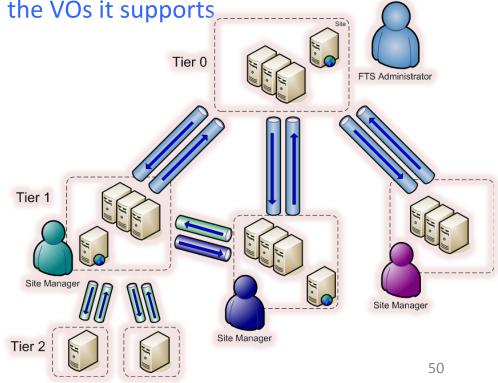
```
for(int i=0; i<array_size; i++)
cout << "\treadValues[" << i << "] = " << readValues[i] << endl;
```

}
cout << "Close successful ..."<<endl;</pre>

LCG

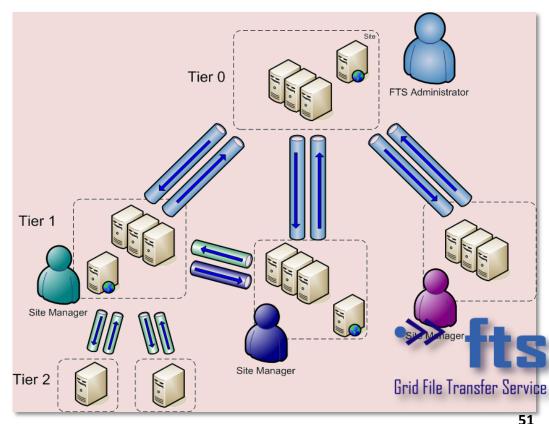
Data Management Problems

- Access: POSIX like
 - programs need to be modified
 - solution: NFS-4.1, WebDav, fuse
- Catalogues and SEs are not synchronized
 - dark data.....
 - synchronization tool in development



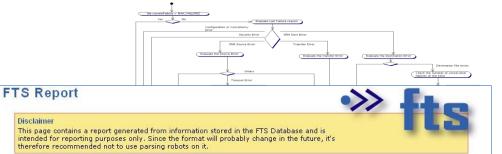
FTS overview

- gLite File Transfer Service is a reliable data movement fabric service (batch for file transfers)
 - FTS performs bulk file transfers between sites
 - Transfers are made between any SRM-compliant storage elements (both SRM 1.1 and 2.2 supported)
- It is a multi-VO service, used to balance usage of site resources according to the SLAs agreed between a site and the VOs it supports
- VOMS aware



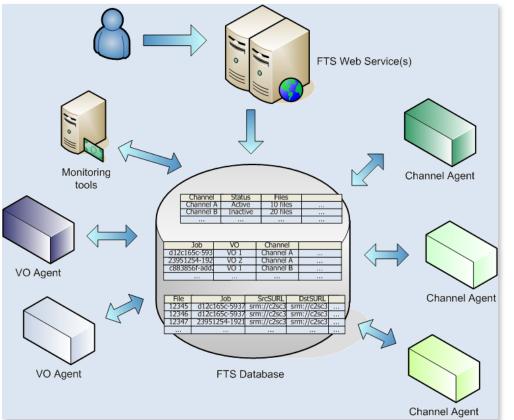
File Transfer Service

- FTS: Reliable, scalable and customizable file transfer
 - Multi-VO service, used to balance usage of site resources according to the SLAs agreed between a site and the VOs it supports
 - WS interface, support for different user and administrative roles (VOMS)
 - Manages transfers through <u>channels</u>
 - mono-directional network pipes between two sites
 - File transfers handled as jobs
 - Prioritization
 - Retries in case of failures
 - Automatic discovery of services
- Designed to scale up to the transfer needs of very data intensive applications
 - Demonstrated about 1 GB/s sustained
 - Over 9 petabytes transferred in 6 months (> 10 million files)



FTS: key points

• Reliability


- It handles the retries in case storage / network failures
 - VO customizable retry logic
- Service designed for high-availability deployment
- Security
 - All data is transferred secure SRM / gridFTP
 - Service audits all user / adm
- Service and performance
 - Service stability: it is designe storage and network resource
 - Service recovery: integration level degradation

Statistics concerning all the transfers performed yesterday Between 2006-10-12 08:00:00 +02:00 and 2006-10-13 08:00:00 +02:00

								CEF	RN*		(Filter)	Show V	/O detail:
Channel Name	VO Name	Total	% Failures	# Succ.	# Fail.	1st Failure Reason	% 1st Failure Reason	2nd Failure Reason	% 2nd Failure Reason	Size	Avg. Duration (sec)	Avg. Tx Rate (MB/sec)	Eff. Tx Bytes (GB)	Tx Byte (GB)
CERN-PIC	[AII]	12262	73.97	3192	9070	Dest SRM	56.22	Other	37.53	0.53	263.03	1.62	1700.41	1700.4
	atlas	8932	99.92	7	8925	Dest SRM	57.13	Other	38.08	0	220	0	0	
	cms	208	0	208	0					2.7	767.55	3.64	561.26	561.3
	dteam	974	0.51	969	5	Other	80	Source SRM	20	0.95	356.31	2.88	923.83	923.
	lhcb	2145	6.53	2005	140	Source SRM	99.29	Other	0.71	0.11	165.85	0.81	215.32	215.
	ops	3	0	3	0					0	202.67	0	0	
CERN-RAL	[AII]	8699	59.26	3544	5155	Other	84.91	Source SRM	14.88	0.85	478.22	2.59	3026.81	3027.
	alice	1155	82.6	201	954	Other	99.58	Dest SRM	0.31	1.86	1805.05	1.11	372.95	372.
	atlas	4512	88.52	518	3994	Other	84.85	Source SRM	15.15	1.79	1428.94	1.49	926.26	926.
	cms	227	3.08	220	7	Dest SRM	85.71	Source SRM	14.29	2.53	348.65	10.08	555.61	555.0
	dteam	1077	3.99	1034	43	Other	86.05	Source SRM	9.3	0.95	276.64	4.01	980.47	980.9
	lhcb	1725	9.1	1568	157	Source SRM	99.36	Other	0.64	0.12	146.03	1.16	191.52	191.
	ops	3	0	3	0					0	27	0.01	0	
CERN-SARA	[AII]	8792	42.55	5051	3741	DestSRM	83.77	Source SRM	12.22	1.34	108.02	15.4	6777.95	6784.
	alice	3134	15.12	2660	474	Source SRM	57.17	Dest SRM	41.14	1.66	109.53	18.43	4426.44	4430.2
	atlas	2018	53.32	942	1076	Dest SRM	72.4	Source SRM	16.54	1.15	144.44	9.42	1085.07	1087
	dteam	3488	61.32	1349	2139	Dest SRM	98.74	Other	0.98	0.93	81.91	14.66	1260.74	1261.3
	lhcb	148	35.14	96	52	Dest SRM	92.31	Other	3.85	0.06	76.1	0.93	5.7	5
	ops	4	0	4	0					0	97.25	0.02	0	
CERN-INFN	[AII]	11492	42.31	6630	4862	DestSRM	43.85	Other	37.7	1.13	395.77	3.21	7514.29	7614.
CERN-CERN	[AII]	1536	39.71	926	610	Source SRM	58.36	Dest SRM	15.9	0.07	287.71	0.38	67.89	69.
CERN-ASCC	[AII]	6851	23.54	5238	1613	Source SRM	50.84	Other	28.89	1.14	1098.6	1.08	5955.81	6080.
CERN-GRIDKA	[AII]	12755	21.38	10028	2727	Source SRM	64.36	Other	32.53	0.87	371.97	3.19	8762.02	8767.
CERN-TRIUMF	[AII]	2244	20.63	1781	463	Other	61.77	Source SRM	31.1	1.04	395.15	3.63	1847.25	1917.1
CERN-BNL	(AII)	13975	19.42	11261	2714	Source SRM	69.97	Other	24.24	0.44	190.38	3.41	4951.59	4960.
CERN-IN2P3	[AII]	11697	13.76	10087	1610	Source SRM	48.57	Other	47.45	1.22	296.21	5.33	12329.63	12329.
CERN-FNAL	[AII]	917	4.58	875	42	Transfer	97.62	Other	2.38	0	379.88	0	0	

FTS Server Architecture

Experiments interact via a web-service

VO agents do VO-specific operations (1 per VO)

Channel agents do channel specific operation (e.g. the transfers)

Monitoring and statistics can be collected via the DB

- All components are decoupled from each other
 - Each interacts only with the (Oracle) database
- FTS 3 in development

What does the code look like?

gLite code base

Total Physical Source Lines of Code (SLOC)

SLOC = 1622714

Total SLOC gr	rouped by languag	je (dominant language first)
Language	Total SLOC	
ansic	578598 (35%)	
срр	491801 (30%)	 Distributed under an open
java	251382 (15%)	-
sh	191798 (11%)	source license.
python	54510 (3%)	
perl	39258 (2%)	• Main platform is Scientifc Linux
yacc	7445 (0%)	
jsp	4444 (0%)	(recompiled RH EL).
lex	2274 (0%)	
csh	701 (0%)	• Many 2rd party dependencies
awk	307 (0%)	 Many 3rd party dependencies
fortran	124 (0%)	
sed	68 (0%)	 tomcat, log4*,gSOAP , ldap etc.
asm	4 (0%)	

4*,gSOAP , Idap etc.

G

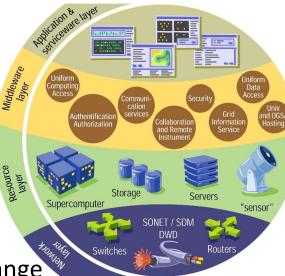
- ~ 20 FTEs, 80 people, 12 institutes (mostly academic)
- Geographically distributed, independent
 - Coding conventions, Documentation, Naming Conventions
 - Testing and quality, dependency management

gLite code details

SLOC by language for all modules			
workload			203069
LCG-DM		165051	
org.glite.security.gsoap-plugin	67422		
org.glite.lb.server	55661		
org.glite.amga.server	50051	Legend -	
org.glite.data.transfer-agents	44987	Languages	
org.glite.security.voms	42833	java csh	
gsoap	37771	fortran	
org.glite.rgma.services	30316	python	
org.glite.dgas.hlr-service	29989	peri ^{jsp}	
org.glite.wms.wmproxy	29904	lex asm	
org.glite.gpbox.gsilib	27248	sh awk	
org.glite.security.voms-admin-server	19882	cpp ansic	
org.glite.wms.wmproxy-api-cpp	18303	sed	
org.glite.data.srm-util-cpp	16462		
org.glite.security.vash	14440		
org.glite.security.lcmaps-without-gsi	13966		
org.glite.data.agents-common	13930		
org.glite.data.transfer-url-copy	13430		

CERN, IT Department

How do we manage the code?


- Builds and test by the development team
- Configuration management by YAIM
 - modular bash shell script
 - >37 000 lines, >30 modules
- Complex certification and release process

Why is this complicated

- Heterogeneity is the main issue
- Middleware is in the "middle"
 - has to work with many front and back-ends
 - this results in many "adaptors"
 - which have to change when the "ends" change
 - testing is much more difficult
 - basically a combinatorial problem
 - everything has to work with everything....
- Too much functionality???

How does the future look like?

- Focus on standardization and interoperation
 - Driving the process
 - OGF etc.
- Focus on stability
- Simplifying the system
- Integrating virtualization
- Integrating Clouds
- End of the EMI project

Thanks

- Slides in this presentation have been collected from several sources
 - contributions from many people