

Euclid Consortium

Probing the Dark Universe with the Euclid Space Mission

Y. Mellier on behalf of the Euclid Collaboration

http://www.euclid-ec.org

Scientific objectives

An accelerating universe dominated by DEconsortium

Is Λ the source of the acceleration?

• If $w_X = P/\rho$ = cte $\rightarrow w_X \sim -1...$ But how close?

- Need higher precision data:
 - is $w_{\rm X}$ = -1.00 $\rightarrow \Lambda$?
 - exploring non-constant w_X : «dynamical dark energy» or…
 - deviation to General Relativity at cosmological scale? or...

•?

<u>Consortium</u>

The ESA Euclid mission: scientific objectives

Understand the origin of the Universe's accelerating expansion

 Constrain parameters that characterise properties of a broad range of dark energy (DE) and modified gravity (MG) models

- Design surveys that can distinguish DE, MG, DM effects by...:
 - using at least 2 independent, complementary probes (5 probes)
 - tracking their observational signatures on the
 - geometry of the Universe:
 - Weak Lensing (WL), Baryon Acoustic Oscillations(BAO),
 - cosmic history of structure formation:
 - WL, Redshift-Space Distortion, Clusters of Galaxies
 - <u>controlling systematic residuals</u> to a very high level of accuracy.

Distinguishing « Dark Energy » hypotheses Euclid

Relevant parameters... parameterising our ignorance:

- DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p a)$
- Growth rate of structure formation controlled by gravity: $f \sim \Omega_m(a)^{\gamma}$ ($\gamma = 0.55$ GR)

- 1. Is the acceleration of expansion produced by a cosmological constant?
 - Distinguish effects of Λ and dynamical dark energy \rightarrow Measure $w(a) \rightarrow$ slices in redshift
 - From Euclid data alone, get $FoM=1/(\Delta w_a x \Delta w_p) > 400$: If data consistent with Λ , and FoM > 400 then :

 \rightarrow Λ favoured with odds of more than 100:1 = a "decisive" statistical evidence.

2. Can we observe deviation from GR on cosmological scales?

- Probe growth of structure → slices in redshift ,
- Distinguish effects of GR from MG models with very high confidence level:

 \rightarrow absolute **1-\sigma precision of 0.02** on the growth index, γ , from Euclid data alone.

(1+2) \rightarrow primary objectives of Euclid \rightarrow how can Euclid achieve this?

The Euclid primary cosmological probes: WL/GC Consortium

• Weak gravitational Lensing (WL):

gravitational distortion (shear)

Weak Lensing: tomography of dark matter

Euclid Consortium

• Weak Lensing (WL), very wide field:

3-D cosmic shear measurements (tomography) over 0<z<2

• Probes distribution of matter (Dark+Luminous): expansion history, growth rate of structure formation.

→ Shapes+distance of galaxies: shear amplitude, and bin the universe into slices.

 \rightarrow Photo-z sufficient, but with optical and NIR data.

SpacePart12, CERN Geneva 5-7, 2012

Galaxy Clustering: BAO/redshift space distortion Consortium

• Galaxy Clustering (GC), very wide field:

3-D position measurements of galaxies over 0<z<2

• Probes expansion rate of the Universe (BAO) and clustering history of galaxies induced by gravity: (RSD); γ , H(z).

 \rightarrow Need high precision 3-D distribution of galaxies with spectroscopic redshifts.

• GC and WL:

- Use the same survey (minimise complexity and cost)
- Use different data, complementary physical effects
- \rightarrow different and decoupled systematics
- Provide huge outstanding VIS imaging, NIR photometry and spectroscopy data with considerable Legacy value, beside the core program

• CG and WL are *P*(*k*,z) explorers:

Both probe power spectra

→ contain also imprints of dark matter (neutrino) and inflation (non-Gaussianity and f_{NL}) on the galaxy and dark matter power spectra

Clusters of galaxies:

- probe of peaks in density distribution
- number density of high mass, high redshift clusters very sensitive to
 - any primordial non-Gaussianity and
 - deviations from standard DE models
- Euclid data will get for free:
 - 60,000 clusters between 0.2 < z < 2, 10^4 of these will be at z > 1.
 - ~ 5000 giant gravitational arcs (\rightarrow SL+WL mass reconstruction)
 - \rightarrow very accurate masses for the whole sample of clusters (WL)
 - \rightarrow dark matter density profiles on scales >100 kpc
- Synergy with Planck (=5th probe: ISW) and eROSITA

Why a space mission?

Shape measurement easier:

 No degradation of the PSF and images by atmospheric effects (seeing, atmospheric refraction)

• PSF very stable

 Shapes of faint galaxies better resolved →systematics much lower and easier to control

NIR data more stable and deeper:

• In the range 1.2< z < 2.5 redshifts cannot be measured without NIR data

• NIR background x1000 fainter than from the ground: deep NIR photometry possible : with ESO/VISTA: 640 years

 NIR observing conditions much more stable than from the ground

Consortium

The Euclid Machine

Euclid

SpacePart12, CERN Geneva 5-7, 2012

The Euclid Mission: baseline and options

SURVEYS In ~5.5 years										
	Area (deg2)		Description							
Wide Survey	15,000 deg ²	Step and stare with 4 dither pointings per step.								
Deep Survey	40 deg ²	In at least 2 patches of $> 10 \text{ deg}^2$ 2 magnitudes deeper than wide survey								
PAYLOAD										
Telescope	1.2 m Korsch, 3 mirror anastigmat, f=24.5 m									
Instrument	VIS	NISP								
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$	$0.763 \times 0.722 \text{ deg}^2$								
Capability	Visual Imaging	NIR	Imaging Photom	NIR Spectroscopy						
Wavelength range	550– 900 nm	Y (920- 1146nm),	J (1146-1372 nm)	H (1372- 2000nm)	1100-2000 nm					
Sensitivity	24.5 mag 10σ extended source Shapes + Photo-a	24 mag 5 σ point source z of <u>n</u> = 1.5 x10	24 mag 5σ point source ⁹ galaxies	24 mag 5σ point source z of n	3 10 ⁻¹⁶ erg cm-2 s-1 3.5σ unresolved line flux =5x10 ⁷ galaxies					
Detector Technology	36 arrays 4k×4k CCD	16 arrays 2k×2k NIR sensitive HgCdTe detectors								
Pixel Size Spectral resolution	0.1 arcsec	0.3 arcsec 0.3 arcsec R=250								
Possibility other surveys: SN and/or µ-lens surveys, Milky Way ?										

Ref: Euclid RB arXiv:1110.3193

Mission Implementation

The Euclid mission... in one slide

Euclid

SpacePart12, CERN Geneva 5-7, 2012

Telescope and payload module

M2 and Focalisatio M2 frame System Ultra Stable M1M2 truss Optical - 1.2 m Korsch Bench - 3 mirror anastigmat - 0.45 deg. off-axis field - f=24.5m - Pointing stability in (x,y):25 mas over 600 s

VIS and NISP: share the same FoV (0.54 deg²) Dichroic beam splitter at exit pupil

SpacePart12, CERN Geneva 5-7, 2012

Thales-Alenia Space design

Astrium design

Euclid Consortium

VIS Instrument

- Large area imager: a « shape measurement machine »
- 36 4kx4k E2V CCDs, 12 micron pixels
- 0.1 arcsec/pixel on sky
- Bandpass 550-900 nm
- Limiting magn.for wide survey : AB 24.5, 10 σ extended
- Data volume 520 Gbit/day

COLD

6

Cal Unit

Euclid

Consortium

WARM

Power and Mechanisms Control Unit

Command and Data Processing Unit

SpacePart12, CERN Geneva 5-7, 2012

Euclid

Assembly

NISP instrument

Euclid Consortium

CERN Geneva 5-7, 2012

NISP+VIS field observing sequence

Courtesy Jerôme Amiaux, ESSWG

Data transfer to Earth: 4 hours/day

Euclid Deep+Wide survey model

Performances

VIS performance: imaging

Euclid Consortium

A 4kx4k view of the Euclid sky

VIS image: cuts made to highlight artefacts

Courtesy Mark Cropper, Sami M. Niemi

Euclid

Euclid:optimised for shape measurementsonsortium M51

SDSS @ z=0.1

Euclid @ z=0.1

Euclid @ z=0.7

• Euclid images of z~1 galaxies: same resolution as SDSS images at z~0.05 and at least 3 magnitudes deeper.

• Space imaging of Euclid will outperform any other surveys of weak lensing.

Cluster with Euclid VIS+NIS imaging

Euclid combined VIS+Y+J+H images of a simulated cluster

Courtesy Massimo Meneghetti

Euclid: DM reconstructed P(k)

power spectrum: recovered to 1%.

SpacePart12, CERN Geneva 5-7, 2012

NISP Performance: images/spectra/redshifts Consortium

Courtesy Anne Ealet, Knud Jahnke, Bianca Garilli, Will Percival, Luigi Guzzo

Shows can meet the required n(z), completeness and purity

SpacePart12, CERN Geneva 5-7, 2012

Euclid

BAO : SDSS, BOSSS vs Euclid

Euclid

Euclid

SpacePart12, CERN Geneva 5-7, 2012

Euclid(WL+GC)+Planck: predicted performances Consortium

DE constraints from Euclid: 68% confidence contours in (w_p, w_a) . Constraints on γ and n_s . Errors marginalised over all other parameters.

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	γ	<i>т _v /</i> еV	f _{NL}	Wp	W _a	FoM
Euclid primary (WL+GC)	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current (2009)	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>40	>400

Laureijs et al 2011, Euclid RB arXiv:1110.3193 from Euclid SWG Amendola et al arXiv:1206.1225

Assume systematic errors are under control

SpacePart12, CERN Geneva 5-7, 2012

Importance of redshifts

Problem: unfeasible to get 2.10⁹ spectroscopic redshifts

Euclid

Consortium

Photo-z with Euclid: need VIS and NIR data

Euclid weak lensing will probe the lensed universe between redshift 0.2 and 3...

Redshifts needed with only an accuracy of 0.05(1+z)

- \rightarrow Photometric redshifts: need 4 visible band and 3 NIR band photometry
- → Euclid + ground based visible data (DES,LSST, Pan-STARRS, KIDS, HSC)

Euclid

Consortium

Ground Segment, data processing

Ground segment organisation : SDCs and OUs consortium

Challenges:

- Data quantity
- Level of quality
- 26 Pbytes /cycle/year
- 10¹⁰ objects/year

First Level 3 release:

26 months after the beginning of the surveys . Then yearly.

Complexity:

Science Data Centers (SDC) in each country should ensure the production of Euclid data

Very complex chain of data production to meet the precision and accuracy requirements

Organisation

Euclid Collaboration: organisation

Euclid Consortium

Schedule

Launch date: Q2 2020

Summary

Euclid Consortium

- ESA is preparing the only space mission designed to understand the origin of the accelerating universe;
- Euclid will use 5 probes to provide:
 - tight constraints over the broadest range of DE; MG models ever explored,
 - unrivalled legacy value of VIS/NISP images and spectra;
- Put Europe at the forefront of a fundamental question in physics/ cosmology for the next decades;
- Eucid is entering in implementation phase. Stay tuned until 2020...
- Hope Euclid will do as well as LHC and Planck...

