

Hinchliffe's Rule

Hinchliffe's Rule:

If the title is a question, the answer is 'no'.

IS HINCHLIFFE'S RULE TRUE? ·

Boris Peon

Abstract

Hinchliffe has asserted that whenever the title of a paper is a question with a yes/no answer, the answer is always no. This paper demonstrates that Hinchliffe's assertion is false, but only if it is true.

Fermi-LAT

Disclaimer I've been doing collider physics....

Search for resonant top plus jet production in $t\bar{t}$ + jets events with detector in pp collisions at $\sqrt{s}=7\,\mathrm{TeV}$

Measurement of ZZ production in pp collisions at $\sqrt{s}=7~{\rm TeV}$ and limits on anomalous ZZZ and $ZZ\gamma$ couplings with the ATLAS detector

Search for a heavy particle decaying to a top quark and a light quark in $p\bar{p}$ collisions at $\sqrt{s}=1.96~{\rm TeV}$

Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at $\sqrt{s}=7$ TeV with the ATLAS detector

Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions a $\sqrt{s}=7~{\rm TeV}$ with the ATLAS detector

Search for Dark Matter Candidates and Large Extra Dimensions in event photon and missing transverse momentum in pp collision data at $\sqrt{s} = 7$ TeV ATLAS detector

Triangulating an exotic T quark

Search for a heavy vector boson decaying to two gluons in $p\bar{p}$ collisions at $\sqrt{s}=1.96~{\rm TeV}$

Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and hadronically decaying W bosons

... I am not (yet) an astro-physicist!

Outline

- I. One line or two?
- II. Source of the photons
- III. Instrumental features
 with brand
 with brand
 cults

Lines

$$E_{\gamma}=m_{\chi}$$

Two lines, or not two lines?

$$E_{\gamma} = m_{\chi} \left(1 - rac{M_Y^2}{4m_{\chi}^2}
ight)$$

Analysis

Source of the photons

Where are they from?

NFW density profile centered at $(\ell, b) = (-1.5^{\circ}, 0^{\circ})$

Finkbiener&Su 1206.1616

The photons

- + 125 < Reco E_v < 135 GeV
- + 105 < Reco E_y < 115 GeV

Following results
use a 3-degree
circle. Results
are ~ the same for
larger regions

Rao & DW 1210.4934

Locations

Rao & DW 1210.4934

Zoom: 1 sigma

Rao & DW 1210.4934

Hypothesis tests

(I,b) fit far from GC

q → negative

$$q=-2\lograc{L(l=\hat{l},b=\hat{b})}{L(l=0,b=0)}$$

(I,b) fit is close to 0,0

q → zero

Locations

Conclusion:

The photon locations are easily consistent with a single DM halo at the GC

Instrumental issues

photons

Could the peak photons be spurious?
Are they different in some way?

First idea

Isolate signal photons

Use energy cut

But

S/B is not large. Few signal photons.

Can we do better?

discriminating variable

background

signal

data

Discriminating variable

(pdfs factorize)

discriminating variable

background

signal

data

$$f_{\mathrm{peak}}(x,y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-5)^2} \times \frac{10-x}{50}$$

$$f_{ ext{non-peak}}(x,y) = rac{x}{50}$$

Whiteson 1208.3677

Also works in a non-linear case!

Whiteson 1208.3677

Performance

For true photon energy of 130 GeV

Results

- incident angle θ , measured with respect to the topface normal of the LAT,
- azimuth angle ϕ , measured with respect to the topface normal of the LAT, folded as described in Eq. (15) of Ref. [11].

Whiteson 1208.3677

variables

Whiteson 1208.3677

External issues?

Whiteson 1208.3677

 the magnetic field in which the LAT is immersed, as parameterized by the McIlwain B and L parameters [14],

Reconstruction

Whiteson 1208.3677

Limb

1st reported: Finkbiener, et al 1209.4562

Other sources

Earth's limb is a powerful control region.

Are there other regions?

Other sources

Earth's limb is a powerful control region.

Are there other regions?

The Sun!

Solar region

Find galactic coord of solar photons

Solar region

PRELIMINARY

Whiteson to appear

Find galactic coord of solar photons

Solar region

PRELIMINARY

Whiteson to appear

Find galactic coord of solar photons

Common features

(1) Find common values of instr. variables across peaks:GC / Limb / Sun

(2) Examine remainder of sky

Do those instrumental features produce a peak at 130?

DNA ...

Common features? PRELIMINARY Whiteson

to appear

GC Sun Sky-GC-Sun

theta

PRELIMINARY

Whiteson to appear

GC

Sun

Limb

theta

PRELIMINARY

Whiteson to appear

Sun

Sun, θ∈ [30,45] deg

23.5
2.5
2
1.5
2
1.5
2
Energy [GeV]

Limb

Sky-GC-Sun

theta

PRELIMINARY

Whiteson to appear

Sun

3.5 2.5 2 1.5 0.5 90 90 100 110 120 130 140 150 180 170 18 Energy [GeV]

Limb

Sky-GC-Sun

Discussion

Theta restriction

- reveals Limb peak, feature in Sky-GC-Sun
- reduces GC, Solar peaks

What is going on? One possibility:

- correlation of Theta and some other not-yet-identified var X
- Sun/Limb/GC sweep out different paths in theta-X space
- particular geometry of Limb correlated to other variable X, effectively restricts Theta
- we see a hint in the sky spectrum just from theta if we could identify X, might enhance feature in sky

Conclusions

Supporting evidence

Features

- strong stat power

Locations

- consistent with GC

No clear instrumental issue

- identified so far

Concerns

Background assumptions

- fair to assume featureless?

No Continuum

- requires some theory gymnastics

Limb, solar, sky signals

- needs resolution
- some strange theta issues

Lines!

Other thetas: 0-30

Other thetas: 45-60

Sun binning

Sun Zoom

sPlots

Given pdfs for two sources $f_1(y)$, and $f_2(y)$ in the discriminating variable y, one can construct a histogram in another unfolding variable x using weights for each source class, sP_1 and sP_2 , defined as:

$$sP_1(y) = rac{\mathbf{V}_{11}f_1(y) + \mathbf{V}_{12}f_2(y)}{N_1f_1(y) + N_2f_2(y)}$$

$$sP_2(y) = rac{\mathbf{V}_{21}f_1(y) + \mathbf{V}_{22}f_2(y)}{N_1f_1(y) + N_2f_2(y)}$$

$$\mathbf{V}_{ab}^{-1} = \sum_{i=1}^{N} rac{(N_1 + N_2) f_a(y_i) f_b(y_i)}{(N_1 f_1(y_i) + N_2 f_2(y_i))^2}$$

Questions

- Are the two features consistent with emission from a single source?
- Are the features consistent with emission from a dark matter halo at the galactic center?

Hypothesis tests

(I,b) fit far from GC

q → negative

$$q=-2\lograc{L(l=\hat{l},b=\hat{b})}{L(l=0,b=0)}$$

(I,b) fit is close to 0,0

q → zero

Hypothesis tests

separate fits are better

q → larger

joint fit is better

q → smaller

Sensitivity

Whiteson 1208.3677

Discriminating var

Unfolding var

Background: flat

Signal: delta func at 0.5

Sensitivity

Whiteson 1208.3677

Discriminating var

Unfolding var

Background: flat

Signal: delta func at 0.5

angles

Angles

Angles

Angles

Hypothesis tests

(I,b) fit far from GC

q → negative

$$q=-2\lograc{L(l=\hat{l},b=\hat{b})}{L(l=0,b=0)}$$

(I,b) fit is close to 0,0

q → zero

