

Hinchliffe's Rule

The Fermi Lines

Are they real?

Hinchliffe's Rule:

If the title is a question, the answer is ' $n o$ '.

IS HINCHLIFFE'S RULE TRUE? •

Boris Peon

Abstract

Hinchliffe has asserted that whenever the title of a paper is a question with a yes/no answer, the answer is always no. This paper demonstrates that Hinchliffe's assertion is false, but only if it is true.

Fermi-LAT

Disclaimer l've been doing collider physics....

Search for resonant top plus jet production in $t \bar{t}+$ jets events with detector in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$

Measurement of $Z Z$ production in $p p$ collisions at $\sqrt{\mathrm{s}}=7 \mathrm{TeV}$ and limits on anomalous $Z Z Z$ and $Z Z$? couplings with the ATLAS detector

Search for a heavy particle decaying to a top quark and a light quark in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

Search for pair-produced heavy quarks decaying to $\boldsymbol{W q}$ in the two-lepton channel at $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS detector

Search for same-sign top-quark production and fourth-generation down-type quarks in $p p$ collisions : $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS detector

Search for Dark Matter Candidates and Large Extra Dimensions in event photon and missing transverse momentum in $p p$ collision data at $\sqrt{s}=7 \mathrm{Te}$

ATLAS detector

Triangulating an exotic T quark
Search for a heavy vector boson decaying to two gluons in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and hadronically decaying W bosons

Outline

I. One line or two?
II. Source of the photons
III. Instrumental features

Lines

$$
E_{\gamma}=m_{\chi}
$$

Two lines, or not two lines?

$$
E_{\gamma}=m_{\chi}\left(1-\frac{M_{Y}^{2}}{4 m_{\chi}^{2}}\right)
$$

Analysis

Two-line fit

Reg3 (ULTRACLEAN), $E_{\gamma}=129.6 \mathrm{GeV}$

$m_{x}=145$
$E_{Y}=130(\mathrm{YZ})$
$m_{x}=130$
$\mathrm{E}_{\mathrm{Y}}=110(\mathrm{YZ})$
$\mathrm{E}_{\mathrm{Y}}=130$ (Y)

$$
\begin{aligned}
& m_{x}=130 \\
& E_{Y}=130(\mathrm{ry})
\end{aligned}
$$

Rajaraman, Tait, DW 1205.4723

Source of the photons

Where are they from?

NFW density profile centered at $(\ell, b)=\left(-1.5^{\circ}, 0^{\circ}\right)$

Finkbiener\&Su 1206.1616

The photons

$+125<$ Reco $\mathrm{E}_{\gamma}<135 \mathrm{GeV}$
$+105<$ Reco $\mathrm{E}_{\gamma}<115 \mathrm{GeV}$

Following results use a 3-degree circle. Results are ~ the same for larger regions

Rao \& DW 1210.4934

Locations

Rao \& DW 1210.4934

130 GeV Feature

+ Most likely position
--.-- 1σ region
- 2σ region

110 GeV Feature

+ Most likely position
..... 1σ region
- 2σ region

110+130 GeV Feature
\star Most likely position
---.-1 1σ region

- 2σ region

Zoom: 1 sigma

Rao \& DW 1210.4934

Hypothesis tests

(1,b) fit far from GC $q \rightarrow$ negative

$$
q=-2 \log \frac{L(l=\hat{l}, b=\hat{b})}{L(l=0, b=0)}
$$

$(1, b)$ fit is close to 0,0
$q \rightarrow$ zero

Locations

Conclusion:

The photon locations are easily consistent with a single DM halo at the GC

Instrumental issues

photons

Could the peak photons be spurious? Are they different in some way?

First idea

One-line fit

Isolate signal photons
Use energy cut
But
S / B is not large.
Few signal photons.
Can we do better?

sPlots

discriminating
 variable

background

 signal
data

sPlots

discriminating
variable

(pdfs factorize)

background

unfolding variable

signal

data

sPlots

discriminating
 variable

background

signal
(pdfs factorize)

sPlots

$f_{\text {peak }}(x, y)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(y-5)^{2}} \times \frac{10-x}{50}$

$$
f_{\text {non-peak }}(x, y)=\frac{x}{50}
$$

Whiteson 1208.3677

sPlots

Also works in a non-linear case!

Performance

For true photon energy of 130 GeV

Results

- incident angle θ, measured with respect to the topface normal of the LAT,

- azimuth angle ϕ, measured with respect to the topface normal of the LAT, folded as described in Eq. (15) of Ref. [11].

variables

Whiteson

1208.3677

External issues?

Whiteson
1208.3677

- the magnetic field in which the LAT is immersed, as parameterized by the McIlwain B and L parameters [14],

Reconstruction

Whiteson
1208.3677

Other sources

Earth's limb is a powerful control region.

Are there other regions?

Ołher sources

Earth's limb is a powerful control region.

Are there other regions?
The Sun!

Solar region

Find galactic coord of solar photons

Solar region

Find galactic coord of solar photons

Solar region

Find galactic coord of solar photons

Common features

(1) Find common values of instr. variables across peaks: GC / Limb / Sun
(2) Examine remainder of sky

Do those instrumental features produce a peak at 130?

GC

Sun

Sky-GC-Sun

DNA ...

Common features?

Limb

Limb

Sun

Sun

GC

Sun

Limb

Sky-GC-Sun
Sky-GC-Sun, All

theta

GC

Gal. Center, $\theta \in[30,45] \mathrm{deg}$

Theta [30,45]

Sun

Limb

Limb, $\theta \in[30,45]$ deg

Sky-GC-Sun
Sky-GC-Sun, All

Sky-GC-Sun, $\theta \in[30,45]$ deg

theta

GC

Gal. Center, $\theta \in[30,45]$ deg

Theta [30,45]

Sun

Limb

Limb, $\theta \in[30,45]$ deg

Sky-GC-Sun
Sky-GC-Sun, All

Sky-GC-Sun, $\theta \in[30,45]$ deg

Discussion

Theta restriction

- reveals Limb peak, feature in Sky-GC-Sun
- reduces GC, Solar peaks

What is going on? One possibility:

- correlation of Theta and some other not-yet-identified var X
- Sun/Limb/GC sweep out different paths in theta-X space
- particular geometry of Limb correlated to other variable X, effectively restricts Theta
- we see a hint in the sky spectrum just from theta if we could identify X , might enhance feature in sky

Conclusions

Supporting evidence

Features

- strong stat power

Locations

- consistent with GC

No clear instrumental issue

- identified so far

Concerns

Background assumptions

- fair to assume featureless?

No Continuum

- requires some theory gymnastics

Limb, solar, sky signals

- needs resolution
- some strange theta issues

Backup

Lines!

Other thetas: 0-30

Other thetas: 45-60

Sky_G_G-Sun

Limb, $\operatorname{Not}(\theta \in[45,60]$ deg $)$

Sky-GC-Sun, $\operatorname{Not}(\theta \in[45,60] \operatorname{deg})$

Sun binning

Sun Zoom

deltaR<5

sPlots

Given pdfs for two sources $f_{1}(y)$, and $f_{2}(y)$ in the discriminating variable y, one can construct a histogram in another unfolding variable x using weights for each source class, $s P_{1}$ and $s P_{2}$, defined as:

$$
\begin{aligned}
s P_{1}(y) & =\frac{\mathbf{V}_{11} f_{1}(y)+\mathbf{V}_{12} f_{2}(y)}{N_{1} f_{1}(y)+N_{2} f_{2}(y)} \\
s P_{2}(y) & =\frac{\mathbf{V}_{21} f_{1}(y)+\mathbf{V}_{22} f_{2}(y)}{N_{1} f_{1}(y)+N_{2} f_{2}(y)} \\
\mathbf{V}_{a b}^{-1} & =\sum_{i=1}^{N} \frac{\left(N_{1}+N_{2}\right) f_{a}\left(y_{i}\right) f_{b}\left(y_{i}\right)}{\left(N_{1} f_{1}\left(y_{i}\right)+N_{2} f_{2}\left(y_{i}\right)\right)^{2}}
\end{aligned}
$$

Questions

- Are the two features consistent with emission from a single source?
- Are the features consistent with emission from a dark matter halo at the galactic center?

Hypothesis tests

(1,b) fit far from GC $\mathrm{q} \rightarrow$ negative

$$
q=-2 \log \frac{L(l=\hat{l}, b=\hat{b})}{L(l=0, b=0)}
$$

(1,b) fit is close to 0,0
$q \rightarrow$ zero

Hypothesis tests

separate fits are better $q \rightarrow$ larger

joint fit is better

$q \rightarrow$ smaller

Sensitivity

Whiteson

 1208.3677
Discriminating var

Unfolding var

Background: flat
Signal: delta func at 0.5

Sensitivity

Discriminating var

Unfolding var

Background: flat
Signal: delta func at 0.5

angles

Angles

Angles

Angles

Hypothesis tests

(1,b) fit far from GC

 $q \rightarrow$ negative$$
q=-2 \log \frac{L(l=\hat{l}, b=\hat{b})}{L(l=0, b=0)}
$$

$(1, b)$ fit is close to 0,0
$q \rightarrow$ zero

$$
-2 \log \frac{L_{130}(\uparrow, \hat{b})}{L_{130}(0,0)}
$$

$$
-2 \log \frac{L_{110}(\uparrow, \widehat{b})}{L_{110}(0,0)}
$$

