Counting Dark Matter Sub-halos: Gaps in Star Streams

Millions of sub-halos

Sub-Halos

- N(M) ~ M^{-1.9}
 - $N^{2}10^{6}$ for M> 10⁶ M_sun inside r<~400kpc
 - ~5-10% of the halo mass
 - Most of the mass in the top 30 or so
 - Known dwarf galaxies
- N_{sub} ~1000 inside 30kpc > 10⁶ M_sun
- Sub-halo scale radius ~ M^{0.43}
 - Gravitational line scattering cross-section dominated by small masses, ~M^{-0.47}

Gap Dynamics

- Distant encounters produce no density changes
- Crossing encounters add and subtract angular momentum nearby
 - Stars pulled forward gain angular momentum, move outward to lower angular rotation rate: stars are donkeys
 - Develops into a gap with removed material folded onto the edge.

Rate of Gaps

- Rate of Gap Creation: Depends on
 - Density of sub-halos, N(M)n(r) [Aquarius]
 - Rate at which sub-halos cross stream $v_{\perp} f(v_{\perp})$
 - Maximum closest approach that leaves a gap, b
 - Smallest mass halo that leaves a visible gap

$$\mathcal{R}_{\cup}(r) = \int_M \int_{v_{\perp}} \int_0^{b_{max}} n(r) N(M) v_{\perp} f(v_{\perp}) \pi \, db \, dv_{\perp} \, dM.$$

~10⁶ simulations of encounters of subhalos with streams varying M, b, v, angles.

Results for cold streams apply to streams with width random J_r (radial velocities).

Real streams have some J_{θ} which can shear away gap.

fraction of circle

Gap Rate integral with cutoff M

- $N(M) = n_0 M^{-1.9}$ from Aquarius MW
- M₈ lowest mass sub-halo (x10⁸ sun) to make a visible gap

$$\mathcal{R}_{\cup}(\hat{M}, r) = 0.0066 \left(\frac{r}{100 \,\text{kpc}}\right)^{0.23} \frac{n(r)/n_0}{6} \times \frac{\sigma}{120 \,\text{km s}^{-1}} \hat{M}_8^{-0.35} \,\text{kpc}^{-1} \,\text{Gyr}^{-1}$$

GAP RATE vs LENGTH/STREAM WIDTH

- Due to epicyclic motion in stream.
- Width gives M that gives smallest gap
- Smallest gap ~ 1-2.5 x width (1 used below)

$$\mathcal{R}_{\cup}(w, r) = 0.059 \left(\frac{n(r)/n_0}{6}\right) \times \left(\frac{r}{100 \,\mathrm{kpc}}\right)^{0.55} \times w^{-0.85} \,\mathrm{kpc}^{-1} \,\mathrm{Gyr}^{-1}$$

steeper at

Some real streams

- M31 (Pandas)
- Milky Way streams

- (mostly with Carl Grillmair)

M31, M33 & Streams ~34mag/sq arcsec

PANDAS

M31: ~12 gaps in ~200kpc

angle

Grillmair: Eastern Banded Structure ~8 gaps/ 16 kpc

Orphan Stream: 2 gaps?

GD-1: 0.4x100 degrees

GD-1

- Narrowest known stream
- Sensitive to smaller mass halos
- 8kpc (close)
- Highest confidence gaps
- Remarkably distribution of gap sizes looks like the LCDM prediction, down to 10⁶ M_sun

Gaps in Star Streams Ages 5-10Gyr

Stream	Gaps	Gaps kpc ⁻¹ Gyr ⁻¹	Width kpc	Galactic radius kpc
M31	12±2	0.012	5	100
Pal5	6±3	0.17	0.2	19
EBS	8±4	0.49	0.17	15
Orphan	2±1	0.037	0.2	30
GD-1	16	0.38	0.07	15

Total Gap-Rate vs Width (line uses smallest gap 2.5xwidth)

Progenitor object substructure confusion?

- Tidal lobes, pericenter passage, lumps
- Most mix out down the stream
- Generally predict varying 2D structure along the stream, which is not currently detected at large distance (Pal 5 epicycles are seen).

Summary

- Stream gaps are a sub-halo counting tool, sensitive to smallest mass sub-halos
- Basic dynamics clear: detailed simulations underway
- Statistics of gaps improving: much to be done
- Data: SDSS 1/5 sky, relatively shallow but uniform
 - Requires ~1000 M>= 10⁶ sub-halos <30kpc
 - Implies total MW population ~ 10^5 to 400 kpc r₅₀
- Factor of ~3 agreement with LCDM predictions, although results allow a turndown around 10⁶ M_sun scale.