## Counting Dark Matter Sub-halos:

 Gaps in Star Streams


## Sub-Halos

- $N(M) \sim M^{-1.9}$
- $\mathrm{N}^{\sim} 10^{6}$ for $\mathrm{M}>10^{6} \mathrm{M}$ _sun inside $\mathrm{r}<\sim 400 \mathrm{kpc}$
- $\sim 5-10 \%$ of the halo mass
- Most of the mass in the top 30 or so
- Known dwarf galaxies
- $\mathrm{N}_{\text {sub }}{ }^{\sim} 1000$ inside $30 \mathrm{kpc}>10^{6} \mathrm{M}$ _sun
- Sub-halo scale radius $\sim \mathrm{M}^{0.43}$
- Gravitational line scattering cross-section dominated by small masses, $\sim \mathrm{M}^{-0.47}$

$$
0.0139
$$



## Gap Dynamics

- Distant encounters produce no density changes
- Crossing encounters add and subtract angular momentum nearby
- Stars pulled forward gain angular momentum, move outward to lower angular rotation rate: stars are donkeys
- Develops into a gap with removed material folded onto the edge.


## Rate of Gaps

- Rate of Gap Creation: Depends on
- Density of sub-halos, $N(M) n(r)$ [Aquarius]
- Rate at which sub-halos cross stream $v_{\perp} f\left(v_{\perp}\right)$
- Maximum closest approach that leaves a gap, b
- Smallest mass halo that leaves a visible gap

$$
\mathcal{R}_{\cup}(r)=\int_{M} \int_{v_{\perp}} \int_{0}^{b_{\max }} n(r) N(M) v_{\perp} f\left(v_{\perp}\right) \pi d b d v_{\perp} d M
$$

$\sim 10^{6}$ simulations of encounters of subhalos with streams varying $M, b, v$, angles.

Results for cold streams apply to streams with width random $J_{r}$ (radial velocities).

Real streams have some $J_{\theta}$ which can shear away gap.

fraction of circle

## Gap Rate integral with cutoff M

- $\mathbf{N}(\mathrm{M})=\mathrm{n}_{0} \mathrm{M}^{-1.9}$ from Aquarius MW
- $\mathrm{M}_{8}$ lowest mass sub-halo (x108 sun) to make a visible gap
$\begin{aligned} \mathcal{R}_{\cup}(\hat{M}, r)= & 0.0066\left(\frac{r}{100 \mathrm{kpe}}\right)^{0.23} \frac{n(r) / n_{0}}{6} \\ & \times \frac{\sigma}{120 \mathrm{~km} \mathrm{~s}^{-1}}\left(\hat{M}_{8}^{-0.35} \mathrm{kpc}^{-1} \mathrm{Gyr}^{-1}\right.\end{aligned}$


## Gap lengths $=\beta \Delta z$

$\mathrm{z}=2 \mathrm{GM} / \mathrm{bv}, \mathrm{b}^{\sim} \mathrm{M}^{0.43}\left(0.8 \mathrm{kpc}\right.$ at $10^{8}$ sun)



$$
l\left(M_{8}\right)=8.3\left(\frac{r}{30 \mathrm{kpc}}\right)^{0.37} M_{8}^{0.41} \mathrm{kpc}
$$

## GAP RATE vs LENGTH/STREAM WIDTH

- Due to epicyclic motion in stream.
- Width gives M that gives smallest gap
- Smallest gap ~ 1-2.5 x width (1 used below) A little steeper at
$\mathcal{R}_{\cup}(w, r)=0.059\left(\frac{n(r) / n_{0}}{6}\right)$

$$
\times\left(\frac{r}{100 \mathrm{kpc}}\right)^{0.55} \mathrm{x}
$$ small r

## Some real streams

- M31 (Pandas)
- Milky Way streams
- (mostly with Carl Grillmair)

M31, M33 \& Streams
~34mag/sq arcsec PANDAS


## M31: ~12 gaps in ~200kpc




## Grillmair: Eastern Banded Structure ~8 gaps/ 16 kpc




## Orphan Stream: 2 gaps?



## GD-1: $0.4 \times 100$ degrees




## GD-1

- Narrowest known stream
- Sensitive to smaller mass halos
- 8kpc (close)
- Highest confidence gaps
- Remarkably distribution of gap sizes looks like the LCDM prediction, down to $10^{6} \mathrm{M}$ _sun


## GD-1

Gap Size Distribution
compared to LCDM
prediction at GD-1 1 degree is 0.15 kpc
$2 \times 10^{6} \mathrm{M}$ _sun


## Gaps in Star Streams <br> Ages 5-10Gyr

| Stream | Gaps | Gaps <br> $\mathrm{kpc}^{-1}$ <br> Gyr $^{-1}$ | Width <br> kpc | Galactic <br> radius <br> kpc |
| :--- | :--- | :--- | :--- | :--- |
| M31 | $12 \pm 2$ | 0.012 | 5 | 100 |
| Pal5 | $6 \pm 3$ | 0.17 | 0.2 | 19 |
| EBS | $8 \pm 4$ | 0.49 | 0.17 | 15 |
| Orphan | $2 \pm 1$ | 0.037 | 0.2 | 30 |
| GD-1 | 16 | 0.38 | 0.07 | 15 |

## Total Gap-Rate vs Width (line uses smallest gap 2.5xwidth)



## Progenitor object substructure confusion?

- Tidal lobes, pericenter passage, lumps
- Most mix out down the stream
- Generally predict varying 2D structure along the stream, which is not currently detected at large distance (Pal 5 epicycles are seen).
$1$


## Summary

- Stream gaps are a sub-halo counting tool, sensitive to smallest mass sub-halos
- Basic dynamics clear: detailed simulations underway
- Statistics of gaps improving: much to be done
- Data: SDSS $1 / 5$ sky, relatively shallow but uniform
- Requires ~1000 M>= $10^{6}$ sub-halos <30kpc
- Implies total MW population ~ $10^{5}$ to $400 \mathrm{kpc} \mathrm{r}_{50}$
- Factor of $\sim 3$ agreement with LCDM predictions, although results allow a turndown around $10^{6}$ M_sun scale.

