PANDA-X

Particle AND Astrophysical Xenon Time Projection Chamber

Scott Stephenson

University of Michigan

February 2, 2013

PandaX Overview

PandaX Experiment

- Direct detection experiment
- Dual-phase xenon TPC (gas/liquid)
- Chinese and US Collaboration
- At China JinPing Deep Underground Lab (CJPL)
- Probing WIMP-nucleon cross section

Collaboration

China

- Shanghai Jiao Tong University
- Shanghai Institute of Applied Physics
- Shandong University
- Peking University
- Ertan Hydropower Development Company

USA

- University of Michigan
- University of Maryland

PandaX Overview

PandaX Experiment

- Direct detection experiment
- Dual-phase xenon TPC (gas/liquid)
- Chinese and US Collaboration
- At China JinPing Deep Underground Lab (CJPL)
- Probing WIMP-nucleon cross section

Collaboration

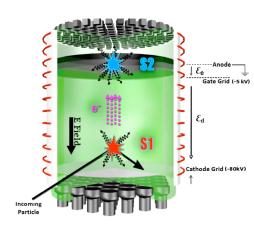
China

- Shanghai Jiao Tong University
- Shanghai Institute of Applied Physics
- Shandong University
- Peking University
- Ertan Hydropower Development Company

USA

- University of Michigan
- University of Maryland

PandaX - A 3D LXe DP TPC for DM DD


Particle AND Astrophysical Xenon experiment A Three Dimensional Liquid Xenon Dual-Phase Time Projection Chamber for Dark Matter Direct Detection

Dual Phase Xe TPC

- Interaction
- 2 First Scintillation (S1)
- Second Scintillation (S2)
- Event Reconstruction/Analysis

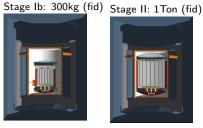
DP Background Discrimination

- Recoil: Nuclear (NR) or Electron (ER)
- NR is signal/ER is background
- NR and ER have differing S2/S1 ratios
- Must reduce NR background to ~zero
- DP design cuts EM background at 99%-99.9% using S2/S1

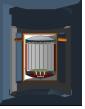
PandaX - A Staged Approach

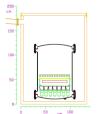
PandaX will progress through three stages.

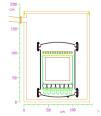
Built for Stage II from the Start


No change to: Shield. Outer Vessel. Cryogenics, Purification. General Infrastructure

Cryostat: Two Versions

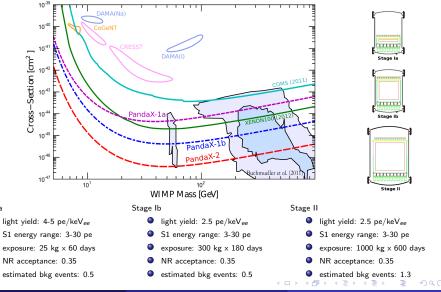

TPC: Three Versions

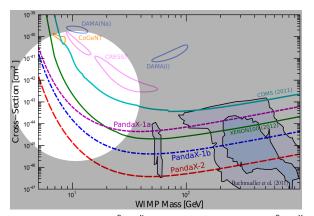

Low threshold High light collection

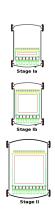


Same inner vessel Quick to implement

Same shield/OV/cooling/+ New inner vessel






PandaX - Sensitivity Goal

Stage la

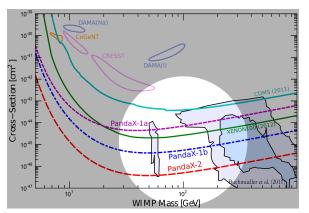
PandaX - Sensitivity - Low Mass

Stage Ia

- light yield: 4-5 pe/keVee
- S1 energy range: 3-30 pe
- exposure: 25 kg x 60 days
- NR acceptance: 0.35
- estimated bkg events: 0.3

Stage Ib

- light yield: 2.5 pe/keV_{ee}
- S1 energy range: 3-30 pe
 - exposure: 300 kg x 180 days
 - NR acceptance: 0.35


PANDA-X

estimated bkg events: 0.5

Stage II

- light yield: 2.5 pe/keV_{ee}
- S1 energy range: 3-30 pe
- exposure: 1000 kg x 600 days
- NR acceptance: 0.35 estimated bkg events: 1.3

PandaX - Sensitivity - High Mass

Stage la

- light yield: 4-5 pe/keV_{ee}
- S1 energy range: 3-30 pe
- exposure: 25 kg x 60 days
- NR acceptance: 0.35
- estimated bkg events: 0.3

Stage Ib

- light yield: 2.5 pe/keV_{ee}
- S1 energy range: 3-30 pe
 - exposure: 300 kg x 180 days
 - NR acceptance: 0.35

PANDA-X

estimated bkg events: 0.5

Stage II

- light yield: 2.5 pe/keV_{ee}
- S1 energy range: 3-30 pe
- exposure: 1000 kg x 600 days
- NR acceptance: 0.35 estimated bkg events: 1.3

Advantages of PandaX Design

Environment and Design:

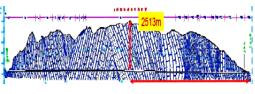

- Very Deep (low muon rate)
- Clean Rock (low radioactivity)
- Simple Shield (easy to service detector)
- Scalable Design (room to grow)

Major Elements with No Changes:

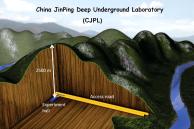
- Shield
- Outer Vessel
- Cryogenics, Purification
- General Infrastructure

TPC Change from Ia to Ib:

- Same Basic TPC Structure
- Same PMTs
- Same Cabling
- Just Add Height
- Rapid Turn Around



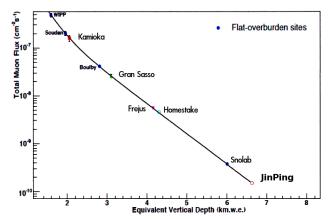
Earthen Shield: CJPL


The China JinPing underground Laboratory (CJPL):

- Located in specialized lab added to hydroelectric service tunnels
- Deep lab at 2400 meters of marble (≈ 6600 mwe)
- Easily accessed by road

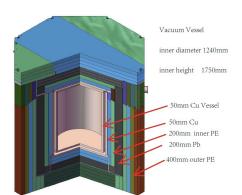
JinPing Mountain

CJPL Experimental Hall - a while ago



JinPing Lab: A Low Background Facility

Low cosmic muon background

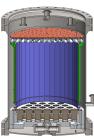


Low radioactivity from rock

Facility	Depth [m.w.e.]	μ Flux [events/(m²·year)]	Rock	²³⁸ U [Bq/kg]	²³² Th [Bq/kg]	⁴⁰ K [Bq/kg]
Jinping (PandaX)	6,600	66	marble	1.8 ± 0.2	< 0.27	< 1.1
Homestake	4,500	950	rhyolite	100	45	900
Grand Sasso – Hall B	3,500	8,030	dolomite	5.2	0.25	4.9

The 66 muons/ $\mathrm{m}^2/\mathrm{year}$ is an estimate based on 33 days of measurement, less uncertainty soon

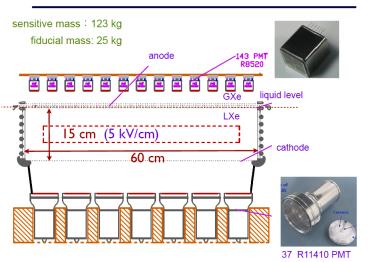
Detector Shield and Ia/Ib Vessel Configuration

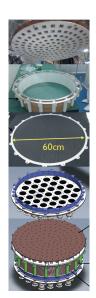


- Low Z (PE) to attentuate n's
- High Z (Pb,Cu) for γ 's
- Same shield/outer vessel for all stages

Stage la

Stage Ib




- Same inner vessel for la/lb
- PandaX la 15x60cm 'Pancake'
- PandaX Ib 60x60cm

14

Detailed Stage la

PANDAX: a LXe detector with high field & high light yield

Status in Past Year


PandaX in 2012

- Shield constructed at CJPL
- All major components tested at SJTU
- TPC assembled
- Cryogenic system operating
- DAQ testing
- Krypton distillation tower operation
- Move to CJPL started

Current Status - Stage la

PandaX Stage Ia: Currently undergoing commissioning:

- Major components at C.IPL
- Clean room environment: TPC assembled
- Slow control in place
- Cryogenic system operating
- Xenon on site
- Small xenon fill and liquefaction so far
- DAQ installed
- Personnel on site daily

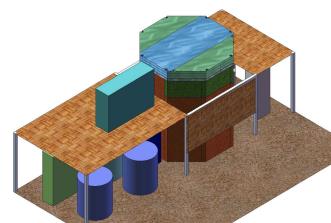
Summary

CJPL - A Clean, Deep Site:

- $\bullet \ \ \, \text{6600 m.w.e.} \, \to \, \text{deepest lab}$
- 66 $\mu/yr/m^2$, no μ veto needed
- Radioquiet
- Surface accessible

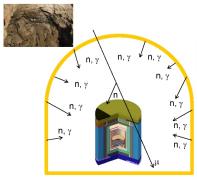
PX Three Stage Approach:

- PandaX Ia 25kg (fid) Low Mass Region
- PandaX Ib 300kg (fid) High Mass Region
- \bullet PandaX II 1Ton (fid) few $\times 10^{-47} cm^2$ level


Rapid Pace:

- Built for Stage II from the beginning
- Installing Stage Ia now
- Probing new parameter space within the year
- Stage II starts in \sim 2 years

Thank you



Backup

Backup

Scott Stephenson PANDA-X February 2, 2013

CJPL Background

Rad. Level, CPUL, Bq/kg		Background Sources			
	²³⁸ U		²³² Th	⁴⁰ K	
Rock	1.8		<0.27	<1.1	
Concrete aggregate	2		0.7	-	
Concrete	60		25	130	

Rad. Lev	тва/кд				
	²³⁸ U	²³² Th	⁶⁰ Co	⁴⁰ K	²¹⁰ Pb
OFC	<0.07	<0.03	<0.0045	<0.06	-
PTFE	0.23	< 0.094	<0.89	0.7	
Pb	< 0.92	<0.72	< 0.12	14	530

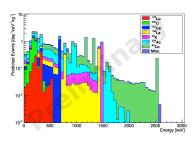
· simulated m flux: 8 x 10-11/cm2/s = 25/yr/m2

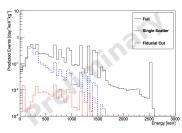
measured m flux: 6/m2/33days = 66/yr/m2 (compared 100 Hz/m2 at sea level)

facility	depth [mwe]	μ flux [events/yr/m ²]	rock	²³⁸ U [Bq/kg]	²³² Th [Bq/kg]	⁴⁰ K [Bq/kg]
Jinping (PandaX)	7,500	66	marble	1.8 ± 0.2	< 0.27	< 1.1
Homestake (LUX)	4,500	950	rhyolite	100	45	900
Grand Sasso – Hall B (XENON)	3,500	8,030	dolomite	5.2	0.25	4.9

UM PandaX Group

PandaX Michigan Group


Lu Ma


Dave Gerdes

PandaX - Krypton Distillation Tower

PandaX - EM Background Spectrum

