Proton Decay in SO(10) with Stabilized Doublet–Triplet Splitting

K.S. Babu Oklahoma State University

"International Workshop on Grand Unified Theories: Current Status and Future Prospects" Ritsumeikan University, Kusatsu, Shiga December 17-19, 2007

K.S. Babu, J.C. Pati, Z. Tavartkiladze (2007)

Outline

Motivation/"Evidence" favoring SO(10) GUT Doublet-Triplet Splitting Issues:

- Dimopoulos-Wilczek Mechanism
- Stability of VEV structure
- Absence of pseudo-Goldsone bosons
- **GUT threshold corrections and unification**

Proton decay

- d=5 and d=6 proton decay rates
- **Correlation between the two**

Conclusions

Motivations/Evidence favoring SO(10)

• Electric charge quantization

♦ $Q_p = -Q_e$ to better than 1 part in 10²¹

- Miraculous cancellation of anomalies
- Quantum numbers of quarks and leptons
- Existence of ν_R and thus neutrino mass via seesaw
- Unification of gauge couplings with low energy SUSY
- $b-\tau$ unification
- Baryon asymmetry of the universe via leptogenesis

Miraculous cancellation of anomalies

- $SU(3)_C^2 \times U(1)_Y$: $\frac{1}{2} \left[2 \times (\frac{1}{6}) + 1 \times (\frac{-2}{3}) + 1 \times (\frac{1}{3}) \right] = 0$
- $SU(2)_L^2 \times U(1)_Y$: $\frac{1}{2} \left[3 \times (\frac{1}{6}) + 1 \times (\frac{-1}{2}) \right] = 0$
- $(\text{gravity})^2 \times U(1)_Y$: $\left[3 \times 2 \times (\frac{1}{6}) + 3 \times (\frac{-2}{3}) + 3 \times (\frac{1}{3}) + 2 \times (\frac{-1}{2}) + 1 \times 1\right] = 0$
- $U(1)_Y^3$:

 $\left[3 \times 2 \times (\frac{1}{6})^3 + 3 \times (\frac{-2}{3})^3 + 3 \times (\frac{1}{3})^3 + 2 \times (\frac{-1}{2})^3 + 1 \times (1)^3\right] = 0$

Suggests SO(10) embedding

SO(10) is automatically anomaly free

Structure of matter multiplets

$$egin{aligned} Q &= egin{pmatrix} u_1 & u_2 & u_3 \ d_1 & d_2 & d_3 \end{pmatrix} &\sim (3,2,rac{1}{6}) \ u^c &= (u_1^c & u_2^c & u_3^c) \sim (\overline{3},1,rac{-2}{3}) \ d^c &= (d_1^c & d_2^c & d_3^c) \sim (\overline{3},1,rac{1}{3}) \ L &= egin{pmatrix}
u &= \
u^c &\sim (1,2,rac{-1}{2}) \
u^c &\sim (1,1,+1) \
u^c &\sim (1,1,0) \end{aligned}$$

Matter Unification in 16 of SO(10)

u_1	:	$ \uparrow\downarrow\uparrow\uparrow\downarrow>$
u_2	:	$ \uparrow\downarrow\uparrow\downarrow\uparrow>$
u_{3}	:	$ \uparrow\downarrow\downarrow\uparrow\uparrow>$
d_1	:	$ \downarrow\uparrow\uparrow\uparrow\downarrow>$
d_2	:	$ \downarrow\uparrow\uparrow\downarrow\uparrow>$
d_3	:	$ \downarrow\uparrow\downarrow\uparrow\uparrow>$
u_1^c	:	$ \downarrow\downarrow\uparrow\downarrow\downarrow>$
u_2^c	:	$ \downarrow\downarrow\downarrow\uparrow\uparrow>$
u^c_{3}	:	↓↓↓↓↑>
d_1^c	:	
d_2^c	:	
d^c_{3}	:	$ \uparrow\uparrow\downarrow\downarrow\uparrow>$
u	:	$ \uparrow\downarrow\downarrow\downarrow\downarrow\downarrow>$
e	:	$ \downarrow\uparrow\downarrow\downarrow\downarrow>$
e^{c}	:	↓↓↑↑↑>
$ u^c$:	$ \uparrow\uparrow\uparrow\uparrow\uparrow>$

Evolution of gauge couplings

Gauge coupling evolution in our SO(10) model

- ...
- E₈
- E₆
- **SO(10)**
- SU(5)

GUT gauge groups

- ••••
- [SU(3)]⁴
- [SU(5)]²
- $[SU(3)]^3$

Minimal SUSY SU(5) GUT

Matter multiplets: $\{10+\bar{5}+1\}$

$$10:\begin{pmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ -u_3^c & 0 & u_1^c & u_2 & d_2 \\ u_2^c & -u_1^c & 0 & u_3 & d_3 \\ -u_1 & -u_2 & -u_3 & 0 & e^c \\ -d_1 & -d_2 & -d_3 & -e^c & 0 \end{pmatrix}$$

$$\bar{\mathbf{5}}:(d_1^c, d_2^c, d_3^c, e, -\nu_e)$$

$$1:\nu^c$$
Higgs: $24_{II}, \quad \{\mathbf{5}_{II}, \quad \bar{\mathbf{5}}_{II}\} \Longrightarrow$ Contain color triplets $\{H_C, \ \bar{H}_C\}$
Yukawa Couplings $Y_u^{ij}\mathbf{10}_i\mathbf{10}_j\mathbf{5}_H + Y_d^{ij}\mathbf{10}_i\mathbf{5}_j\mathbf{5}_H$

 $M_{\ell} = M_d^T \Rightarrow m_b = m_{\tau}, m_s = m_{\mu}, m_d = m_e$

MSSM Higgs doublets have color triplet partners in GUTs

 $H(1,2,1/2) \oplus H_c(3,1,-1/3) = 5$ of SU(5) $\bar{H}(1,2,-1/2) \oplus \bar{H}_c(\bar{3},1,1/3) = \bar{5}$

 H, \bar{H} must remain light H_C, \bar{H}_C must have GUT scale mass to prevent rapid proton decay

Doublet-triplet splitting

Even if color triplets have GUT scale mass, d=5 proton decay is problematic

Doublet-triplet splitting in SU(5)

$$W_{D-T} = \overline{5}_{H} (\lambda 24_{H} + M) 5_{H}$$
$$< 24_{H} >= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -3/2 & 0 \\ 0 & 0 & 0 & 0 & -3/2 \end{pmatrix} V$$

 $M_{H_c} = \lambda V + M \sim O(M_{GUT}); M_H = -\frac{3}{2}\lambda V + M$ Fine-tuned to $O(M_w)$

The GOOD

The BAD

- (1) **Predicts unification of couplings**
- (2) Uses economic Higgs sector

(1) Unnatural fine tuning

(2) Large proton decay rate

Realistic SO(10) model without fine-tuning

Quarks and leptons: $\{16_i\}$

Economic Higgs system

Babu, Pati, Wilczek (1998) Barr, Raby (1997) Babu, Pati, Tavartkiladze (2007)

 $\{45_H + 16_H + \overline{16}_H\} \Rightarrow \text{breaks symmetry to SM}$ $\{10_H + 10'_H\} \Rightarrow \text{EW symmetry breaking}$ $\{16'_H + \overline{16}'_H\} \Rightarrow \text{avoids pseudoGoldstones}$ $\{2 \text{ singlets} : S, Z\} \Rightarrow \text{Fixes VEVs}$

Small Higgs representation \Rightarrow Small threshold effects for gauge couplings

A Z_2 -assisted anomalous $\mathcal{U}(1)$ symmetry guarantees stability

Dimopoulos-Wilczek mechanism

B-L VEV gives mass to triplets only

 \implies If 10_H only couples to fermions, no d=5 proton decay

$$\implies$$
 Doublets from 10_H and $10'_H$ light

4 doublets, unification upset

Add mass term for $10'_{H}$

$$W_{D-T} = \lambda (10_H 45_H 10'_H) + M 10'_H 10'_H$$

Issues to be addressed with DW mechanism

- Can the VEV pattern for 45_H be realized?
- Is the VEV structure stable?
- Are there flat directions?
- Are there pseudo-Goldstone bosons?
- Are threshold corrections small?
- Is d = 5 proton decay consistent with data?

We now have a complete model where all issues are successfully addressed

Complete SO(10) Model

Z_2 -assisted anomalous $\mathcal{U}(1)$

	A(45)	H(10)	H'(10)	C(16)	$\bar{C}(\overline{16})$	Z	S	C'(16)	$\bar{C}'(\overline{16})$	16_i
$\mathcal{U}(1)$	0	1	-1	$\frac{k+4}{2k}$	$-\frac{1}{2}$	$\frac{2}{k}$	$\frac{2}{k}$	$\frac{k-4}{2k}$	$-\frac{k+8}{2k}$	$-\frac{1}{2}+a_i$
Z_2	_	+	_	+	+		+	+	+	P_i

Superpotential:

$$W(A) = M_{A} \operatorname{tr} A^{2} + \frac{\lambda_{A}}{M_{*}} \left(\operatorname{tr} A^{2}\right)^{2} + \frac{\lambda'_{A}}{M_{*}} \operatorname{tr} A^{4}$$

$$W(A, C, C') = C \left(\frac{a_{1}}{M_{*}} ZA + \frac{b_{1}}{M_{*}} C\bar{C} + c_{1}S\right) \bar{C}' + C' \left(\frac{a_{2}}{M_{*}} ZA + \frac{b_{2}}{M_{*}} C\bar{C} + c_{2}S\right) \bar{C}$$

$$W(DT) = \lambda_{1} HAH' + \lambda_{H'} \frac{S^{k}}{M_{*}^{k-1}} (H')^{2} + \lambda_{2} H\bar{C}\bar{C}$$

Fixing the VEVs

All the VEVs are fixed, in desired directions

Doublet-Triplet Mass Matrix

$$M_{D,T} = \begin{array}{cccc} 5_{H} & 5_{H'} & 5_{\bar{C}} & 5_{\bar{C}'} \\ \bar{5}_{H} & \left(\begin{array}{cccc} 0 & \eta_{D,T}a & \lambda_{2}c & 0 \\ -\eta_{D,T}a & M_{H'} & 0 & 0 \\ -\eta_{D,T}a & M_{H'} & 0 & 0 \\ \bar{5}_{C'} & 0 & 0 & \kappa_{D,T}Y_{1} \\ 0 & 0 & \kappa_{D,T}Y_{2} & M'\eta \end{array} \right)$$

with
$$\eta_D = 0$$
, $\eta_T = \lambda_1$, $\kappa_D = 3$, $\kappa_T = 2$

 $M_{H'} = \lambda_{H'} s^k / M_*^{k-1}$, $Y_{1,2} = 2a_{1,2} z a / (M_*) \sim M_{\text{GUT}}^2 / M_*$

$$M' \subset Z^2 S C' \overline{C}' / M^2$$
, $\eta = 1$ or 0

All color triplets heavy, one pair of Higgs doublets light H_u is in 5_H, H_d in $\overline{5}_H + 16'_H \Rightarrow \tan \beta \neq \frac{m_t}{m_b}$

Stability of doublet mass

$$M_{D,T} = \begin{array}{cccc} 5_{H} & 5_{H'} & 5_{\bar{C}} & 5_{\bar{C}'} \\ \bar{5}_{H} & \begin{pmatrix} 0 & \eta_{D,T}a & \lambda_{2}c & 0 \\ -\eta_{D,T}a & M_{H'} & 0 & 0 \\ -\eta_{D,T}a & M_{H'} & 0 & 0 \\ 0 & 0 & 0 & \kappa_{D,T}Y_{1} \\ \bar{5}_{C'} & 0 & 0 & \kappa_{D,T}Y_{2} & M'\eta \end{pmatrix}$$

Zeros in first column protected by $\mathcal{U}(1) \times Z_2$ symmetry Mass for doublet needs negative charge VEV All GUT scale VEVs have positive $\mathcal{U}(1)$ charge Superpotential must be holomorphic

 $A^n(C\overline{C})^m$ type terms would destabilize (B - L) VEV Such terms forbidden by $\mathcal{U}(1)$ symmetry

$$W_{\mu} = \frac{1}{\tilde{M}} HC'C'S \Rightarrow \mu \sim 10^2 \text{ GeV}$$

This shows all order stability of doublet mass

Spectrum of doublets and triplets

 $\frac{M_{D_1}M_{D_2}M_{D_3}}{M_{T_1}M_{T_2}M_{T_3}M_{T_4}} = \frac{9}{4M_{\text{eff}}\cos\gamma}$

with
$$\tan \gamma = \frac{\lambda_2 c}{3Y_2}$$
, $\frac{1}{M_{\text{eff}}} = (M_T^{-1})_{11} = \frac{M_{H'}}{\lambda_1^2 a^2}$

 $M_{\rm eff}$ controls d = 5 proton decay: $\mathcal{A}(d = 5) \propto 1/M_{\rm eff}$ $M_{\rm eff} \sim 10^{19}$ realized naturally, as $M_{H'} \ll M_{\rm GUT}$

Spectrum heavy states from 45 $M_{e_A^c} = M_3 = \frac{1}{2}M_8 \equiv \frac{1}{2}M_\Sigma$, with $M_\Sigma = \frac{2\lambda'_A}{6\lambda_A + \lambda'_A}M_A$. $M_3 : M(1,3,0), M_8 : M(8,1,0), M_{e^c} : M(1,1,1)$

Remaining states are in $10 + \overline{10}$ of SU(5)

Spectrum from 10 + 10-bar

$$M(\Psi^{10}) = \begin{array}{ccc} \overline{\Psi}_{A}^{\overline{10}} & \overline{\Psi}_{\overline{C}}^{\overline{10}} & \overline{\Psi}_{\overline{C}'}^{\overline{10}} \\ \Psi_{A}^{10} & \begin{pmatrix} M_{\Psi} & 0 & X_{1} \\ 0 & 0 & \kappa_{\Psi}Y_{1} \\ \Psi_{C'}^{10} & \begin{pmatrix} X_{2} & \kappa_{\Psi}Y_{2} & M'\eta \end{pmatrix} \end{array},$$

with $\Psi = (u^c, q, e^c)$, $\kappa_{\Psi} = (2, 1, 0)$, $M_{\Psi} = (0, 0, M_{\Sigma}/2)$

 $X_{1,2} = 4a_{1,2}zc/M_*$ $\mathcal{U}_1^c \mathcal{U}_2^c = Y_1 Y_2 (4 + \tilde{p}^2) , \ \mathcal{Q}_1 \mathcal{Q}_2 = Y_1 Y_2 (1 + \tilde{p}^2) , \ \mathcal{E}_1^c \mathcal{E}_2^c = Y_1 Y_2 \hat{p}^2$

with
$$\tilde{p}^2 = \frac{|X_1|^2}{|Y_1|^2} = \frac{|X_2|^2}{|Y_2|^2}$$
, $\hat{p}^2 = \tilde{p}^2 \left| 1 - \frac{M_{\Sigma}M'}{2X_1X_2} \eta \right|$

Gauge boson spectrum

 $M^{2}(X,Y) = g^{2}a^{2} \equiv M_{X}^{2}$, $M^{2}(X',Y') = M_{X}^{2}(1+p^{2})$

 $M^2(V_{u^c,\bar{u}^c}) = M_X^2(4+p^2), \quad M^2(V_{e^c,\bar{e}^c}) = M_X^2p^2, \quad \text{with} \quad p^2 = \frac{4c^2}{a^2}$

Note: $p = \tilde{p}$ in the model

 \Rightarrow Apparent N = 4 SUSY in $\{10 + \overline{10}\}$ spectrum

 \Rightarrow Threshold corrections from $\{10 + \overline{10}\}$ cancels

 \Rightarrow Model almost as predictive as minimal SUSY SU(5)

Threshold corrections

$$\alpha^{-1}(\Lambda) = \alpha_i^{-1}(M_Z) - \frac{b_i}{2\pi} \ln \frac{\Lambda}{M_Z} + \Delta_{i,w}^{(2)} + \Delta_i^{\mathsf{GUT}} ,$$

Weak scale threshold

$$\begin{array}{lll} \mbox{Case 1}: & \tan\beta = 3 \;, \; m_0 \simeq 300 \; {\rm GeV}, \; \; m_{1/2} \simeq 352.4 \; {\rm GeV} \\ \Rightarrow \; \Delta_{i,w}^{(2)} \simeq (0.2602, \; 0.349, \; 1.207) \\ \mbox{Case 2}: & \tan\beta = 3 \;, \; m_0 \simeq 930 \; {\rm GeV}, \; \; m_{1/2} \simeq 146.8 \; {\rm GeV} \\ \Rightarrow \; \Delta_{i,w}^{(2)} \simeq (0.4021, \; 0.2264, \; 0.9483); \\ \mbox{Case 3}: & \tan\beta = 3 \;, \; m_0 \simeq 1.97 \; {\rm TeV}, \; m_{1/2} \simeq 146.8 \; {\rm GeV} \;, \\ \Rightarrow \; \Delta_{i,w}^{(2)} \simeq (0.6431, \; 0.4739, \; 1.209). \end{array}$$

GUT scale threshold

Hisano, Murayama, Yanagida (1993) Hisano, Moroi, Tobe, Yanagida (1995)

$$\begin{split} \ln \frac{M_{\text{eff}} \cos \gamma}{M_Z} &= \frac{5\pi}{6} \left(3(\alpha_2^{-1} + \Delta_{2,w}^{(2)} - \frac{1}{6\pi}) - 2(\alpha_3^{-1} + \Delta_{3,w}^{(2)} - \frac{1}{4\pi}) - (\alpha_1^{-1} + \Delta_{1,w}^{(2)}) \right) \\ &- \ln \frac{4\kappa^{5/2}}{9} + \ln \frac{(4+p^2)^{3/2}(1+\tilde{p}^2)^2}{(4+\tilde{p}^2)^{3/2}(1+p^2)^2} + \ln \frac{p}{\hat{p}} \\ \ln \frac{\left(M_X^2 M_\Sigma\right)^{1/3}}{M_Z} &= \frac{\pi}{18} \left(5(\alpha_1^{-1} + \Delta_{1,w}^{(2)}) - 3(\alpha_2^{-1} + \Delta_{2,w}^{(2)} - \frac{1}{6\pi}) - 2(\alpha_3^{-1} + \Delta_{3,w}^{(2)} - \frac{1}{4\pi}) \right) \\ &+ \frac{1}{6} \ln \kappa - \frac{1}{6} \ln \frac{(4+p^2)(1+\tilde{p}^2)^2}{(4+\tilde{p}^2)(1+p^2)^2} - \frac{1}{3} \ln \frac{p}{\hat{p}} \end{split}$$

Very similar to minimal SUSY SU(5) threshold

A single new parameter beyond SU(5)

 \Rightarrow better $\alpha_3(M_Z)$

 M_{H_C} of SU(5) replaced by $M_{\rm eff}\cos\gamma$

 $\Rightarrow d = 5$ proton decay under control

Correlation between d=5 and d=6 proton decay

$$M_{\rm eff} \simeq 10^{18} {\rm GeV} \cdot \left(\frac{10^{16} {\rm GeV}}{M_X}\right)^3 \left(\frac{3}{\tan\beta}\right) \left(\frac{1/25}{r}\right) \frac{\exp[2\pi(\Delta_{2,w}^{(2)} - \Delta_{3,w}^{(2)} - \delta\alpha_3^{-1})]}{1.42 \cdot 10^{-2}} \,.$$

 $r \equiv M_{\Sigma}/M_X \ll 1, \ r = (1/25 - 1/200)$

$$\alpha_3^{-1}(M_X) = \alpha_3^{-1}(M_Z) + \Delta_{3,w}^{(2)} - \frac{1}{4\pi} + \frac{3}{2\pi} \ln \frac{M_X}{M_Z}$$

$$-\frac{1}{2\pi} \ln \frac{M_X^2}{M_{T_1}M_{T_2}M_{T_3}M_{T_4}} + \frac{3}{2\pi} \ln r - \frac{1}{2\pi} \ln \frac{M_X^2}{U_1^c U_2^c} - \frac{1}{\pi} \ln \frac{M_X^2}{Q_1 Q_2} .$$
$$\alpha_G = (1/19 - 1/22)$$

Gauge coupling evolution in our SO(10) model

Light SUSY spectrum, $\alpha_3(M_Z) \simeq 0.1176$, $\tan \beta = 3$.

Light SUSY spectrum, $\alpha_3(M_Z) \simeq 0.1176$, $\tan \beta = 3$.

Medium-heavy SUSY spectrum, $\alpha_3(M_Z) \simeq 0.1176$, $\tan \beta = 3$.

Medium-heavy SUSY spectrum, r = 1/200, $\tan \beta = 3$.

Gauge boson induced d=6 proton decay

$$p o e^+ \pi^0$$
, $au_p^{-1} \approx \left[rac{g^2}{M_X^2}
ight]^2 m_p^5 \approx [10^{36\pm 1} yr]^{-1}$

Higgsino mediated d=5 proton decay

Sakai, Yanagida (1982)

Weinberg (1982)

 $p \to \bar{\nu} K^+$

$$\tau_p^{-1} \approx \left[\frac{f^2}{M_{H_c}M_{SUSY}}\right]^2 \left(\frac{\alpha}{4\pi}\right)^2 m_p^5 \approx \left[10^{28} - 10^{32} yr\right]^{-1}$$

Proton Decay in the present SO(10) model

$$\begin{split} \tau_p^{d=5}(p \to \bar{\nu}K^+) &\simeq 2.3 \cdot 10^{33} \, \mathrm{yrs} \times \left(\frac{0.01 \,\mathrm{GeV}^3}{\tilde{\beta}}\right)^2 \left(\frac{1.74}{A_S^t}\right)^2 \left(\frac{1.34}{A_L}\right)^2 \times \\ & \times \left(\frac{M_{\mathrm{eff}}}{1.51 \cdot 10^{19} \mathrm{GeV}}\right)^2 \left(\frac{m_{\tilde{q}}}{1.8 \mathrm{TeV}}\right)^4 \left(\frac{125 \mathrm{GeV}}{M_{\tilde{W}}}\right)^2 \ . \end{split}$$

Analysis similar to BPW (1998)

 $\Rightarrow M_{\rm eff} > 1.2 \times 10^{19} {\rm GeV}$

d = 6 Proton decay

$$\begin{split} & \Gamma(p \to e^+ \pi^0) \simeq \frac{m_p}{64\pi f_\pi^2} (1 + D + F)^2 \bar{\alpha}^2 \left(\frac{g_5^2 A_R}{M_X^2}\right)^2 \left(5 + \frac{2}{1 + p^2} + \frac{1}{(1 + p^2)^2}\right) \,, \\ & \Gamma(p \to \bar{\nu} \pi^+) \simeq \frac{m_p}{32\pi f_\pi^2} (1 + D + F)^2 \bar{\alpha}^2 \left(\frac{g_5^2 A_R}{M_X^2}\right)^2 \left(1 + \frac{1}{1 + p^2}\right)^2 \,. \end{split}$$

For
$$p \leq 1/3$$
, $\Gamma(p \to e^+\pi^0) \simeq \Gamma(p \to \bar{\nu}\pi^+)$,
 $p \sim 1$, $\Gamma(p \to e^+\pi^0) \sim 1.4 \cdot \Gamma(p \to \bar{\nu}\pi^+)$.
 $p \gg 1$, $\Gamma(p \to e^+\pi^0) \simeq 2.5\Gamma(p \to \bar{\nu}\pi^+)$.
 $\tau_p(p \to e^+\pi^0) = (0.8 - 7.6) \cdot 10^{34}$ years,
 $\tau_p(p \to \bar{\nu}\pi^+) = (0.83 - 18) \cdot 10^{34}$ years.

Summary and Conclusions

- New SO(10) model with natural doublet-triplet mass splitting has been proposed
- Mass hierarchy stable to all orders
- No pseudo-Goldstone bosons
- GUT scale threshold effects surprisingly small
- Better values of $\alpha_3(M_Z)$ predicted
- d = 5 proton decay adequately but not fully suppressed
- d = 5 and d = 6 proton decay rates correlated
- Both $p \to \overline{\nu}K^+$ and $p \to e^+\pi^0$ should be within reach of HyperKamiokande and DUSEL experiments