String Compactification and Unification of Forces

J. E. Kim, Seoul National Univ.

GUT Workshop
Ritsumeikan Univ., 18. 12. 2007

Based on papers with B. Kyae, J.-H. Kim, I-W Kim JHEP 0706.034 [hep-ph/0702278] (R-parity,etc.)
PLB 647, 275; PLB 651, 407;
PLB 656, 207 [0707.3292](GMSB) ;
arXiv: 0712.1596 (KK mass)

1. Introduction

2. R-parity
3. $\operatorname{SU}(5)$ ' hidden sector from Z_{12-1} orbifold compactification
A. FCNC, B. FCNC conditions,
C. Z(12-I) models without exotics
4. Threshold correction toward unification

5. Conclusion

1. Introduction

- With LHC in sight, TeV scale SUSY will be in check. Superstring relies on this SUSY phenomenology.
- The $E_{8} x E_{8}$ heterotic string gives a good gauge groups and string phenomenology is most successful in compactifications of the heterotic string.
- TeV SUSY is based on supergravity Lagrangian in the last 24 years. [Cremmer et al]
- Gravitino phenomenology: reheating temp. $<10^{9-7} \mathrm{GeV}$ [EKN, KKM]
Attempts exist to detect it at LHC via neutralino decay to gravitino [Buchmuller et al.]
- R-parity for proton longevity: most string models are ruled out. The $u^{c} d^{c} d^{c}$ coupling must be forbidden.
- The μ-problem, or more generally the MSSM problem [KN, Giudice-Masiero]. But why only one pair?
- Little hierarchy problem: at present fine-tuning of order 1% needed(10-100 TeV SUSY particle masses). Negative stop mass considered to raise it to 5-10\% finetuning [Dermisik-H.D. Kim]
----we hope that it will be understood in the end.
- Strong CP problem: string axions
[Witten, CK, I-W Kim \& K, Conlon]
-SUSY flavor problem: GMSB, AMSB
[Dine-Fischler-Raby, Dine-Nelson, Seiberg et
al, ISS]
- KKLT led to the consideration of mirage mediation
[Choi-Nilles, others]
- Exotics or no exotics?

Most string models accompany exotics. Chiral exotics are dangerous phenomenologically. Some build models with chiral exotics, which is outrageously wrong as a phenomenological model.

So, all exotics must be made vectorlike.
This is a nontrivial condition.
Until recently, we did not find exotics-free models. But it seems that there are exotics-free models. The weak mixing angle here is not $3 / 8$. Except this, the condition on singlet VEVs is not so strong as in models with exotics.

This talk is a top-down approach.
Specific examples if needed will be in Z_{12-1} orbifold models.

2. R-parity

R-parity (or matter parity) in the MSSM is basically put in by hand: q and I are odd, H are even

SO(10) GUT advocates that it has a natural R-parity 16 odd, 10 even
But it is nothing but the disparity between spinor-vector difference of S \& V:
SSV coupling allowed, butSSS coupling not allowed

$$
u^{c} d^{c} d d
$$

In heterotic string compactification, we note the E_{8} adjoint has

$$
\left.\begin{array}{l}
S=(++-+-+++), \text { etc }+=1 / 2,-=-1 / 2 \\
V=(1-10000000
\end{array}\right) \text {, etc }
$$

Therefore, in heterotic string compactification the strategy is to put matter representations in S type and Higgs reps. in V type of the original E_{8}.

As a GUT, E_{6} is not good in this sense because matter 16 and Higgs 10 are put in the same 27.

$$
27=16+10+1
$$

$\mathrm{U}(1)$ charge Γ : by even $\Gamma \mathrm{VEV}, \Gamma=(22200000) \rightarrow \mathrm{P}$ Then, Γ =odd integer for S
Γ =even integer for V . Then P is good.

$$
S=(++--++++), \text { etc. }
$$

$$
V=(10-100000), \text { etc. } \quad 126 \text { belongs to } V \text { [Mohapatra] }
$$

There are 4 possibilities of $U(1) s$:

$$
\begin{aligned}
& B-L \sim(2220000), X \sim(22222000) \\
& Q_{1} \sim(00000200), Q_{2} \sim(00000020)
\end{aligned}
$$

3. $\operatorname{SU}(5)$ ' hidden sector from Z_{12-1} orbifold compactification: no exotics, R-parity, and MSSM

- The orbifold compactification is well known by now. [book: K.-S. Choi and K]
- The $\mathrm{E}_{8} \mathrm{~K} \mathrm{E}_{8}$ heterotic string gives a good gauge groups and string phenomenology is most successful here.
- Any orbifold has a same order of complexity. Even though Z_{3} looks the simplest, 27 fixed points makes it very complicated. Z_{12-1} looks complicated, but it is simple in Wilson lines and makes it intuitively superior to others.

	Lattice	Effective Order	Condition
Z_{3}	$\mathrm{SU}(3)^{3}$	$\begin{aligned} & 3 a_{1}=0,3 a_{3}=0, \\ & 3 a_{5}=0 \end{aligned}$	$a_{1}=a_{2}, a_{3}=a_{4}, a_{5}=a_{6}$
Z_{4}	$\begin{aligned} & \mathrm{SU}(4)^{2} \\ & \mathrm{SU}(4) \times \mathrm{SO}(5) \times \mathrm{SU}(2) \end{aligned}$	$\begin{aligned} & 2 a_{1}=0,2 a_{4}=0 \\ & 2 a_{1}=0,2 a_{5}=0, \\ & 2 a_{6}=0 \end{aligned}$	$\begin{aligned} & a_{1}=a_{2}=a_{3}, a_{4}=a_{5}=a_{6} \\ & a_{1}=a_{2}=a_{3}, a_{4}=0 \end{aligned}$
	$\mathrm{SO}(5)^{2} \times \mathrm{SU}(2)^{2}$	$\begin{aligned} & 2 a_{2}=0,2 a_{4}=0, \\ & 2 a_{5}=0,2 a_{6}=0 \end{aligned}$	$a_{1}=a_{3}=0$
Z_{6}-I	$\mathrm{SU}(3) \times \mathrm{SU}(3)^{2}$	$3 a_{1}=0 \longleftarrow$	$a_{1}=a_{2}, a_{3}=a_{4}=a_{5}=a_{6}=0$
Z_{6}-II	$\mathrm{SU}(2) \times \mathrm{SU}(6)$	$2 a_{1}=0 \longleftarrow$	$a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=0$
	$\mathrm{SU}(3) \times \mathrm{SO}(8)$	$3 a_{1}=0,2 a_{5}=0$	$a_{1}=a_{2}, a_{3}=a_{4}=0, a_{5}=a_{6}$
	$\mathrm{SU}(2)^{2} \times \mathrm{SU}(3)^{2}$	$\begin{aligned} & 3 a_{1}=0,2 a_{3}=0, \\ & 2 a_{4}=0 \end{aligned}$	$a_{1}=a_{2}, a_{5}=a_{6}=0$
Z_{7}	SU(7)	$7 a_{1}=0 \longleftarrow$	$a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{6}$
Z_{8}-I	$\mathrm{SO}(8) \times \mathrm{SO}(5)$	$2 a_{1}=0,2 a_{6}=0$	$a_{1}=a_{2}=a_{3}=a_{4}, a_{5}=0$
Z8-II	$\mathrm{SO}(10) \times \mathrm{SU}(2)$	$2 a_{4}=0,2 a_{6}=0$	$a_{1}=a_{2}=a_{3}=0, a_{4}=a_{5}$
	$\mathrm{SU}(2)^{2} \times \mathrm{SO}(8)$	$\begin{aligned} & 2 a_{1}=0,2 a_{5}=0, \\ & 2 a_{6}=0 \end{aligned}$	$a_{1}=a_{2}=a_{3}=a_{4}$
Z_{12}-I	E6	no restriction	$a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=0$
	$\mathrm{SU}(3) \times \mathrm{SO}(8)$	$3 a_{1}=0$	$a_{1}=a_{2}, a_{3}=a_{4}=a_{5}=a_{6}=0$
Z_{12}-II	$\mathrm{SU}(2)^{2} \times \mathrm{SO}(8)$	$2 a_{1}=0,2 a_{2}=0$	$a_{3}=a_{4}=a_{5}=a_{6}=0$

Some simple cases of Wilson lines

A. FCNC

- SUSY flavor problem led to the GMSB.
- GMSB : SO(10), 16+10, SU(5), 10+5* [Veneziano, ADS, PT]
- Unstable vacuum: SU(5), 6(5+5*), 7(5+5*), etc. [ISS]

The messenger sector \{f, ...\} [e.g. Murayama-Nomura]

$$
\begin{aligned}
& \text { Unstable }: W_{\text {tree }}=m \bar{Q} Q+\frac{\lambda}{M_{P l}} Q \bar{Q} f \bar{f}+M \bar{f}, \quad Q=h \text { quark } \\
& \text { Stable }: L=\int d^{2} \theta\left[\frac{1}{M^{2}} \bar{f} f W^{\prime \alpha} W_{\alpha}^{\prime}+M_{f} \overline{f f}\right]+\text { h.c. }
\end{aligned}
$$

In string compactification, there are many heavy charged fields which can act as the messenger sector.

For the SUSY flavor problem, we need a dynamical symmetry breaking (DSB) scale less than 10 11-12 GeV . Then the gravity mediation is subdominant, and we expect the SUSY flavor problem is remedied. Before 2006/02, DSB is the obtained by the fight between the runaway dynamical solution and the steep strong solution [Abel],

Nelson-Seiberg argued the need for R-symmetry to break SUSYdynamically at the ground state.

ISS looked for a sufficiently long lived unstable vaccum, where the need of R-symmetry is discarded.

$$
W_{I S S}=\overline{b_{i}} S^{i j} b_{j}-\frac{\operatorname{det} S^{i j}}{\Lambda^{N_{f}-3}}-m_{i} \Lambda S^{i i}
$$

SU(5) with
6 flavors [MN]

The R-symmetry breaking is introduced by the tree level $W_{\text {tree }}$, including the messengers f. S develops an F-term and SUSY breaking is mediated by f sector (generating F term by $\mathrm{W}_{\text {tree }}$) to the observable sector.

Since 2006, the unstable minimum near the origin of the field space has been considered. It lives sufficiently long so that we can consider it as an acceptable vacuum. [ISS]

To fulfil the condition for the DSB to occur at a relatively low energy scale, we introduce different radii for three tori. It is reminiscent of HoravaWitten's introduction of a distance between two branes.

Also extra particles in the desert may be used to fit the data.

B. SUSY FCNC Conditions

SUSY flavor constraint

The stringent SUSY flavor bound [Masiero-Silvestrini] generally falls in the region,

$$
\delta \approx O\left(10^{-2}, \quad 10^{-3}\right)
$$

Different flavors can have different s-fermion couplings, in particular in the Kaehler potential. So, the SUSY flavor problem is generic.

The SUSY desert hypothesis fixes $\alpha_{G U T}$ around $1 / 25$ at $(2-3) \times 10^{16} \mathrm{GeV}$, but this can be changed by populating the desert with incomplete multiplets. We may allow $\alpha_{\text {GUT }}$ between 1/20-1/30.

For the SUSY flavor problem, the gravity mediation must be sub-dominant the GMSB, thus we may requires the SUSY breaking scale in the GMSB scenario below 1011-12 GeV .

The GMSB scenario needs two ingredients

- SUSY breaking sector: a confining gauge group, e.g. $S U(5)$ ', with quark Q: scale Λ_{h}
- Messeger scale MX

So, we consider the following scale

$$
\begin{aligned}
& \frac{\Lambda_{h}^{3}}{M_{P}^{2}} \leq 10^{-3} \mathrm{TeV} \Rightarrow \Lambda_{h} \leq 2 \times 10^{12} \mathrm{GeV} \\
& \frac{\left(\xi \Lambda_{h}\right)^{2}}{M_{X}} \approx 10^{3} \mathrm{GeV}
\end{aligned}
$$

The one-loop coupling running is

$$
\begin{aligned}
& \frac{1}{\alpha_{G U T}^{h}}=\frac{1}{\alpha_{j}^{h}(\mu)}+\frac{-b_{j}^{h}}{2 \pi} \ln \left|\frac{M_{G U T}^{h}}{\mu}\right| \\
& A=1 / \alpha_{G U T}, \quad A^{\prime}=1 / \alpha_{G U T}^{h}
\end{aligned}
$$

$$
A^{\prime}-1=\frac{-b_{j}^{h}}{2 \pi} \ln \left|\frac{M_{G U T}^{h}}{\Lambda_{h}}\right|
$$

For example, if $-b_{j}^{h}$ is given, we can relate A^{\prime} and Λ_{h},
$\mathrm{SU}(4)$ no matter (any such model?), $12 \rightarrow \mathrm{~A}^{\prime}=27.4$ SU(5) 7 flavors, $8 \rightarrow A^{\prime}=18.6$

The confining scale is estimated as

FIG. 2: Constraints on A^{\prime}. The confining scale is defined as the scale μ where $\alpha_{j}^{h}(\mu)=1$. Using $\xi=0.1, M_{X}=2 \times 10^{16} \mathrm{GeV}$ in the upper bound region and $\xi=0.1, M_{X}=\frac{1}{2} \times 10^{6} \mathrm{GeV}$ in the lower bound region, we obtain the region bounded by dashed vertical lines. Thick dash curves are for $-b_{j}^{h}=5$ and 9 .

C. $A Z_{12-1}$ Model without Exotics

- 3 chiral families: this restricts very much the possibility of good representations
(10+5-bar, or many 5 \& 5-bar flavors are desirable, since 3 families already have many chiral fields)
- Vectorlike exotics, or no exotics: This is another strong restriction. Why $_{\text {12-I }}$?

Probably, most restrictive in Yukawa couplings. Wilson line is simple Z_{3}, not like Z_{12-I}. In this sense, it is a very simple model.

Restrictiveness because of 12 used:
Approximate R-parity in flipped SU(5) [IWK-K-Kyae, ph/0612365] Effective R-parity in SM [K-JHKim-Kyae,ph/0702278, JHEP 0706, 034 (2007)]

Orbifold

manifold/discrete sym.

$$
S^{\prime} / Z_{2}\left\{\begin{array}{l}
V_{y}(y)=-V_{y}(-y) \\
V_{\mu}(y)=+V_{\mu}(-y)
\end{array}\right.
$$

$$
T^{2} / Z_{3}\left\{\begin{array}{l}
V_{z}(z)=e^{2 \pi / 3 / 3} V_{z}\left(e^{n i / \psi_{z}} z\right) \\
V_{\mu}(z)=1 V_{z}\left(e^{\left.2 \psi_{z} / z\right)}\right.
\end{array}\right.
$$

$$
\begin{aligned}
& \text { g: } 5 / z_{2} \quad y \xrightarrow[m o x]{ }-y \\
& \mathrm{~T}^{2} / \mathrm{I}_{3} \quad \mathrm{Z} \xrightarrow[\mathrm{map}]{ } e^{2 \pi i / \mathrm{i}} \mathrm{Z}
\end{aligned}
$$

SD SUSY GUT

String
Modula Inv.

$$
\begin{aligned}
& \text { gauge sym. } \quad \text { s sups } \\
& N \times\left(V^{2}-\phi^{2}\right)=\text { integer }
\end{aligned}
$$

Gauge sym. must be broken.
Renormalized gauge coupling

$$
\begin{aligned}
\frac{16 \pi^{2}}{g_{H}^{2}(\mu)} \approx \frac{16 \pi^{2}}{g_{*}^{2}}+b_{H}^{0} \ln \frac{M_{A}^{2}}{\mu^{2}}-\frac{1}{4} b_{G}^{N=2} \ln \frac{M_{P}^{2}}{M_{R}^{2}} \\
\left(\text { Not }_{R}^{N+2}\right)
\end{aligned}
$$

Wilson line shifts up ($k K$) masses. $\left(\begin{array}{l}\text { Wilson line breaking } \\ \text { in string theory }\end{array} \frac{\text { orbifold breaking }}{\text { in field theory }}\right.$)

To study $N=2$ SUSY KK masses, ${ }^{3}$ modulus (\sim radius)
\longrightarrow Non-prime orbifold higher twist sectors include sub-lattice inv. under 9 .
To discuss KK masses, GSO projection, Wilson line eff., threshold corr., need to Partition Function.

Z_{12-1} has the twist

Z_{3} has the twist

$$
\phi=\left(\frac{5}{12}, \frac{4}{12}, \frac{1}{12}\right) \quad \phi=\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)
$$

- Wilson lines distinguish 3 fixed points. Only one (34)-torus and 3 fixed points for Z_{12-1} and $3 \times 3 \times 3=27$ fixed points in Z_{3}. In the end, in terms of Wilson lines it is not as complicated as Z_{3}. The geometric discussion is simpler since we pay attention to the (34)-torus only. Much of breaking E_{8} is directly done by V only, which is the reason a can be simple.

The modular invariance conditions to be satisfied are:
$12\left(V^{2}-\phi^{2}\right)=$ even integer, 8
$12 a_{3}{ }^{2}=$ even integer,
$12 \mathrm{~V} \cdot \mathrm{a}_{3}=$ integer,
0 in our case. $a_{3}=a_{4}$, others $a_{1}=\cdot \cdot=0$
Masslessness conditions are for $\mathrm{k}=0$ (U), 1, 2, $\cdots, 12$

$$
\begin{aligned}
& L-\text { mover }: \frac{(P+k V)^{2}}{2}+\sum_{i} N_{i}^{L} \tilde{\phi}_{i}-\tilde{c}_{k}=0 \\
& R \text {-mover }: \frac{(\vec{r}+k \vec{\phi})^{2}}{2}+\sum_{i} N_{i}^{R} \tilde{\phi}_{i}-c_{k}=0 \\
& \quad(P+k V) \cdot a_{3}=0, \pm 1, \pm 2, \cdots, \quad k=0,3,6,9
\end{aligned}
$$

Generalized GSO projection

$$
\begin{aligned}
& P_{k}(f)=\frac{1}{12 \cdot 3} \sum_{l=0}^{N-1} \tilde{\chi}\left(\theta_{k}, \theta_{l}\right) e^{2 \pi i \theta_{f}} \\
& \Theta_{f}=\sum_{i}\left(N_{i}^{L}-N_{i}^{R}\right) \hat{\phi}_{i}-\frac{k}{2}\left(V_{f}^{2}-\phi^{2}\right)+\left(P+k V_{f}\right) \cdot V_{f}-(\vec{r}+k \vec{\phi}) \cdot \vec{\phi} \\
& \quad V_{f}=V+m_{f} a_{3}
\end{aligned}
$$

$$
\begin{aligned}
& V= \frac{1}{12}(2,2,2,4,4,1,3,6)(3,3,3,3,3,1,1,1)^{\prime} \\
& a_{3}= \frac{1}{3}(0,0,0,0,0,0,0,0)(0,0,0,0,0,2,-1,-1)^{\prime} \\
& S U(4) \times S U(2)_{W} \times S U(2)_{V} \times S U(2)_{n} \times U(1)_{a} \times U(1)_{b} \\
& \times S U(5)^{\prime} \times S U(3)^{\prime} \times U(1)^{\prime 2}
\end{aligned}
$$

$$
S U(4):\left\{\begin{array}{l}
\alpha_{1}=(01-100 ; 000) \\
\alpha_{2}=\left(\frac{1}{2} \frac{-1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} ; \frac{-1}{2} \frac{-1}{2} \frac{-1}{2}\right) \\
\alpha_{3}=\left(\frac{1}{2} \frac{-1}{2} \frac{-1}{2} \frac{-1}{2} \frac{-1}{2} ; \frac{1}{2} \frac{1}{2} \frac{1}{2}\right)
\end{array}\right.
$$

$$
\left.S U(2)_{W}: \alpha_{W}=\left(\begin{array}{llll}
0 & 0 & 1-1 ; & 0
\end{array}\right) 00\right)
$$

$$
S U(2)_{V}: \alpha_{V}=\left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2} \frac{1}{2}\right)
$$

Pati-Salam
Classification We use 4* (4) instead of 4 (4*)

$$
S U(2)_{n}: \alpha_{n}=\left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{-1}{2} \frac{-1}{2} ; \frac{-1}{2} \frac{-1}{2} \frac{1}{2}\right) .
$$

$\mathrm{SU}(2)_{\mathrm{V}}$ is like $\mathrm{SU}(2)_{\mathrm{R}}{ }^{*}$ in the Pati-Salam model. Rather than obtaining the SM directly, we go through the intermediate SU(4). This helps in making the classification job simple.
The electroweak hypercharge contains the E_{8} ' part,

$$
\begin{aligned}
& Y=\tau_{3}+Y_{4}+Y^{\prime} \\
& Y_{4}=\text { diag. }(1 / 6,1 / 6,1 / 6,-1 / 2) \text { for } 3 \\
& Y_{4}=\text { diag. }(-1 / 6,-1 / 6,-1 / 6,1 / 2) \text { for } \overline{3} \\
& \tau_{3} \quad \text { is } \quad \operatorname{SU}(2)_{V} \quad \text { generator }
\end{aligned}
$$

$$
Y^{\prime}=\left(0^{8}\right)(1 / 3,1 / 3,1 / 3,1 / 3,1 / 3,0,0,0)
$$

Matter in $\left(S U(4), S U(2)_{W}, S U(2)_{V}\right)_{Y}$, notation

```
U1:(\overline{4},\mathbf{2},\mathbf{1})\textrm{o},2(\mathbf{6},\mathbf{1},\mathbf{1})
U ( 2 (4, 1, 2) o, (6, 1, 1)o
U3:(4,1,2)o, 2(\mathbf{1},\mathbf{2},\mathbf{2})}\mp@subsup{)}{\textrm{o}}{0},(\mathbf{1},\mathbf{1},\mathbf{1};\mathbf{2};\mathbf{1},\mathbf{1})
T}\mp@subsup{T}{\textrm{o}}{}:(\overline{\mathbf{4}},\mathbf{1},\mathbf{1}\mp@subsup{)}{1/2}{\prime},(\mathbf{1},\mathbf{2},\mathbf{1}\mp@subsup{)}{1/2}{},(\mathbf{1},\mathbf{1},\mathbf{2}\mp@subsup{)}{1/2}{
T\mp@subsup{1}{+}{\prime}}:(\mathbf{1},\mathbf{2},\mathbf{1})-1/2,(\mathbf{1},\mathbf{1},\mathbf{2})-1/2
T1_: (1, 1, 2; 1;5';1)
```



```
T}\mp@subsup{2}{+}{\prime}:\mp@subsup{5}{2/5}{\prime},\mp@subsup{\overline{\mathbf{3}}}{0}{\prime}
T2_: (1, 2, 2)o, 3
```



```
        2(\mathbf{1},\mathbf{2},\mathbf{1}\mp@subsup{)}{-1/2}{,}2(\mathbf{1},\mathbf{1},\mathbf{2};\mathbf{2};\mathbf{1};\mathbf{1}\mp@subsup{)}{1/2}{\prime},(\mathbf{1},\mathbf{1},\mathbf{2};\mathbf{2};\mathbf{1};\mathbf{1}\mp@subsup{)}{-1/2}{\prime}
        (1, 2, 1; 1; 5';1)}\mp@subsup{-1/10, 2 ( (1, 2, 1; 1; 5'; 1) (1/10}{}{\prime
T40
T}\mp@subsup{4}{+}{\prime}:2\underline{(\mathbf{4},\mathbf{2},\mathbf{1}}\mp@subsup{)}{0}{0},2(\mathbf{4},\mathbf{1},\mathbf{2}\mp@subsup{)}{0}{0},2(\mathbf{6},\mathbf{1},\mathbf{1}\mp@subsup{)}{0}{},7\cdot\mp@subsup{\mathbf{2}}{0}{n},9\cdot\mp@subsup{\mathbf{1}}{0}{
T4_ : 2(\mathbf{1},\mathbf{1},\mathbf{1};\mathbf{2};\mathbf{1};\mp@subsup{\mathbf{3}}{}{\prime}\mp@subsup{)}{0}{\prime},2\cdot\mp@subsup{\mathbf{3}}{\mathbf{o}}{\prime}
T}\mp@subsup{T}{+}{}:(\overline{\mathbf{4}},\mathbf{1},\mathbf{1}\mp@subsup{)}{1/2}{\prime},(\mathbf{1},\mathbf{1},\mathbf{2}\mp@subsup{)}{1/2}{
```



```
T6: 6}\cdot\mp@subsup{\overline{5}}{-2/5}{\prime},5\cdot\mp@subsup{5}{2/5}{\prime}
```

This model does not have exotics.

The set with $\operatorname{SU}(5)$ ' singlet fields is anomaly free in the SM gauge group.

SU(5)' Hidden-sector

Hidden sector $\operatorname{SU}(5)^{\prime}$ quarks: $\mathrm{N}_{\mathrm{f}}=10$

But nontrivial under SM group

$P+n[V \pm a]$		$\text { No. } \times \text { (Repts. })_{Y, Q_{1}, Q_{2}}$
	L L L L L L L L L	$\begin{aligned} & \left.1,1,2 ; 1 ; 5{ }^{\prime}, 1\right)_{-}^{L} / / 10,-1 / 6,-4 / 3 \\ & \left(1,1,1,1 ; 5^{\prime}, 1\right)_{2 / 5,-1 / 3,-8 / 3}^{L} \\ & \left(1,2,1 ; 1,5^{\prime}, 1\right)_{-1 / 10,-1 / 2,0}^{L} \\ & 2\left(1,2,1 ; 1 ; \overline{5}^{\prime}, 1\right)_{1 / 10,1 / 2,0}^{L} \\ & 4\left(1,1,1 ; 1 ; \overline{5}^{\prime}, 1\right)_{-2 / 5,-1,0}^{L} \\ & 2\left(1,1,1 ; 1 ; 5^{\prime}, 1\right)_{2 / 5,-1,0}^{L} \\ & 2\left(1,1,1 ; 1 ; \overline{5}^{\prime}, 1\right)_{-2 / 5,1,0}^{L} \\ & 3\left(1,1,1 ; 1 ; 5^{\prime}, 1\right)_{2 / 5,1,0}^{L} \end{aligned}$

So, the θ^{0} component VEVs of $5-5^{*}$ condensate mesons is almost zero and $\operatorname{SU}(2)_{\mathrm{w}}$ is not broken at the SUSY breaking scale by θ^{0} component VEVs. But θ^{2} components are large and carry $\operatorname{SU}(2)_{W}$ quantum numbers. So, our model, even though very attractive, is breaking SM at the SUSY breaking scale (by meson F-term and baryon VEVs) and not working as a realistic model. [Planck-07, Warsaw]

Another $\mathrm{Z}_{12-\mathrm{I}}$ Model

This model is very interesting in

- 3 families
- No exotics
- One pair of Higgs doublets
- GMSB at a stable vacuum
- But $\sin ^{2} \Theta_{w} \neq 3 / 8$

The shift vector and Wilson line is taken as

$$
\begin{aligned}
& \text { V =(1/12)(6 } 662223 \text { 3)(3 } 333311 \text { 1)' } \\
& a_{3}=(1 / 12)(11200000)(0000011 \text {-2)' }
\end{aligned}
$$

Gauge group is
$\mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(3)_{\mathrm{w}} \times \mathrm{SU}(5)^{\prime} \times \mathrm{SU}(3)^{\prime} \times \mathrm{U}(1) \mathrm{s}$
Lee-Weinberg electroweak model and no exotics

$$
\Gamma=\frac{1}{3} Q_{2}+Q_{3}+W_{8}, \quad \text { Lee }- \text { Weinberg } \quad S U(3)_{W}
$$

Note that $\mathrm{U}(1)_{\Gamma}$ charges of SM fermions are odd and Higgs doublets are even. Extra vectorlike doublets are given superheavy masses. By breaking by VEVs of even Γ singlets, we break $U(1)_{\Gamma}$ to a discrete matter parity P. R-parity is achieved here. [JEK, plb 656, 207 (2007) [arXiv:0707.3292]

$P+[k V+k a]$	No. \times (Repts. $)_{Y\left[Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}\right]}$	Γ	Label
	$\begin{gathered} 3 \cdot(\mathbf{3}, 2)_{1 / 6}^{L}[0,0,0 ; 0,0,0] \\ 2 \cdot(\overline{\mathbf{3}}, 1)_{-2 / 3}^{L}[-3,3,2 ; 0,0] \\ (\overline{3}, 1)_{-2 / 3}^{L}[0,6,-1 ; 5,1] \\ (\overline{\mathbf{3}}, 1)_{1 / 3}^{L}[3,-3,0 ; 0,-4] \\ 2 \cdot(\overline{\mathbf{3}}, 1)_{1 / 3}^{L}[-3,3,-2 ; 0,0] \end{gathered}$	1 -1 1	q_{1}, q_{2}, q_{3} u^{c}, c^{c} t^{c} d^{c} s^{c}, b^{c}
$\left(\frac{-1}{3} \frac{-1}{3} \frac{1}{3} \frac{2}{3}-\frac{1}{3} \frac{2}{3} 000\right)\left(0^{8}\right)_{T_{4}}^{\prime}$	$(1,2)_{-1 / 2}^{L}{ }_{[-6,6,0 ; 0,0]}$	1	l_{1}, l_{2}
$\begin{aligned} & \left(000 \frac{2}{3} \frac{-1}{3} \frac{2}{3} \frac{-1}{4} \frac{-1}{4}\right)\left(\frac{1}{4} \frac{1}{1} \frac{1}{12} \frac{1}{12}\right)_{T_{10}}^{\prime} \\ & \left(\frac{-1}{3} \frac{-1}{3} \frac{1}{3} \frac{1}{3} \frac{-2}{3} \frac{1}{3} \frac{-1}{4} \frac{-1}{4}\right)\left(\frac{1}{4} \frac{1}{12} \frac{1}{12} \frac{1}{12}\right)_{T_{T_{+}}}^{\prime} \end{aligned}$	$\begin{gathered} (1,2)_{1 / 2}^{L}[0,6,-1 ; 5,1] \\ (1,2)_{-1 / 2}^{L}[-6,0,-1 ; 5,1] \end{gathered}$	0	$\begin{aligned} & H_{u} \\ & H_{d} \end{aligned}$

The SM spectrum

Three quark families appear as
$3\left(3_{c}, 3_{w}\right)$
At low energy, we must have nine 3^{*} w to cancel $\operatorname{SU}(3)_{w}$ anomaly.

Remain three pairs of $3^{*}{ }_{w}\left(\mathrm{H}^{+}\right)$and $3^{*}{ }_{w}\left(\mathrm{H}^{-}\right)$after $3^{*}{ }_{w}($ lepton $)$

Both H_{u} and H_{d} appear from 3^{*}. It is in contrast to the other cases such as in $\mathrm{SU}(5)$ or $\mathrm{SO}(10)$. The H_{u} and H_{d} coupling must come from

$$
3^{*}{ }_{w} 3^{*}{ }_{w} 3^{*}{ }_{w} \text { coupling. }
$$

Thus, there appears the Levi-Civita symbol and two epsilons are appearing, in $\mathrm{SU}(3)_{\mathrm{w}}$ space, a, b, c and in flavor space, I, J,
Therefore, in the flavor space the $\mathrm{H}_{\mathrm{u}}-\mathrm{H}_{\mathrm{d}}$ mass matrix is antisymmetric and hence its determinant is zero.

One pair of Higgs doublets is massless:
MSSM problem resolved.

It is interesting to compare

Introduction of color:
56 of old SU(6) in 1960s = completely symm.
But spin-half quarks are fermions leads to antisymmetric index= SU(3) color [Han-Nambu]

Introduction of flavor in the Higgs sector:
Lee-Weinberg SU(3)-weak gives
3*-3*-3* SU(3)-weak singlet = antisymmetric gives
antisymmetric bosonic flavor symmetry (SUSY)!

$P+n[V \pm a]$	Γ	No. \times (Repts.) $)_{\left[\left[Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}\right]\right.}$
$\left(\frac{1}{6} \frac{1}{6} \frac{-1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{4} \frac{1}{4}\right)\left(\frac{-3}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{-1}{4} \frac{-1}{4} \frac{-1}{4}\right)_{\text {T1_ }}^{\prime}$	2	$\left(1 ; \overline{5}^{\prime}, 1\right)_{0}^{L}{ }_{[3,3,1 ; 1,-1]}$
$\left.\frac{1}{6} \frac{-1}{6} \frac{-1}{6} \frac{-1}{6} \frac{-1}{6} 000\right)\left(\frac{1}{2} \frac{1}{2} \frac{-1}{2} \frac{-1}{2} \frac{-1}{2} \frac{-1}{6} \frac{-1}{6} \frac{-1}{6}\right)_{T 2_{+}}^{\prime}$	-1	$\star\left(1 ; 10^{\prime}, 1\right)_{0}^{L}{ }_{[3,-3,0 ;-2,-2]}$
$\left(0^{6} \frac{1}{4} \frac{-3}{4}\right)\left(\frac{3}{4} \frac{-1}{4} \frac{-1}{4} \frac{-1}{4} \frac{-1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}\right)_{T 3}^{\prime}$	-1	$\left(2_{n} ; \mathbf{5}^{\prime}, 1\right)_{0}^{L}{ }_{[0,0,-1 ;-1,3]}$
$\left(0^{6} \frac{3}{4} \frac{-1}{4}\right)\left(\frac{-3}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{-1}{4} \frac{-1}{4} \frac{-1}{4}\right)_{T 9}^{\prime}$	1	$\left(2_{n} ; \overline{5}^{\prime}, 1\right)_{0}^{L}[0,0,1 ; 1,-3]$
$\left(0^{3} \frac{-1}{3} \frac{-1}{3} \frac{-1}{3} \frac{1}{4} \frac{1}{4}\right)\left(\frac{-3}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{12} \frac{1}{12} \frac{1}{12}\right)_{T 7_{0}}^{\prime}$	-1	$\star\left(1 ; \overline{5}^{\prime}, 1\right)_{0}^{L}[0,-6,1 ; 1,1]$
$\left(\frac{1}{6} \frac{1}{6} \frac{-1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{-1}{4} \frac{-1}{4}\right)\left(\frac{3}{4} \frac{-1}{4} \frac{-1}{4} \frac{-1}{4} \frac{-1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}\right)_{T 7}^{\prime}$	0	$\left(1 ; 5^{\prime}, 1\right)_{0}^{L}[3,3,-1 ;-1,3]$
$\left(0^{6} \frac{-1}{2} \frac{-1}{2}\right)(\underline{-10000000})_{T 6}^{\prime}$	-2	$3 \cdot\left(1 ; \overline{5}^{\prime}, 1\right)_{0}^{L}[0,0,-2 ;-4,0]$
$\left(0^{6} \frac{-1}{2} \frac{-1}{2}\right)(\underline{10000000})_{T 6}^{\prime}$	-2	$2 \cdot\left(1 ; 5^{\prime}, 1\right)_{1}^{L}[0,0,-2 ; 4,0]$
$\left.\frac{1}{2} \frac{1}{2}\right)(\underline{-10000000})_{T 6}^{\prime}$	2	$2 \cdot\left(1 ; \overline{5}^{\prime}, 1\right)_{-1[0,0,2 ;-4,}^{L}$
$\left(0^{6} \frac{1}{2} \frac{1}{2}\right)(\underline{10000000)})_{T 6}^{\prime}$	2	$3 \cdot(\mathbf{1} ; \mathbf{5}, 1)_{0}^{L}{ }_{[0,0,2 ; 4,0]}$

The $\operatorname{SU}(5)$ ' spectrum

The chiral representation 10+5* remain. It is known that SUSY is broken dynamically [Veneziano,....].

Murayama-Nomura, PRD:

$$
L=\int d^{2} \theta\left[\frac{1}{M^{2}} \bar{f} f W^{\prime \alpha} W_{\alpha}^{\prime}+M_{f} \overline{f f}\right]+\text { h.c. }
$$

M is the parameter, presumably above $10^{12} \mathrm{GeV}$. D-type quarks can be colored messengers.

$$
T_{3} \sec \text { tor : } \quad 3 \phi=\left(\frac{1}{4}, 0, \frac{1}{4}\right)
$$

(12) torus

$$
T_{6} \sec \text { tor }: \quad 6 \phi=\left(\frac{1}{2}, 0, \frac{1}{2}\right)
$$

For example, in T_{6} we may consider S_{4} symmetry. The Yukawa couplings must respect this kind of discrete symmetry. Can be used to obtain nonabelian discrete symmetries.

6. Threshold correction

In string compactification, the threshold correction comes from non-prime orbifolds. A general form was discussed before. The non-prime orbifolds have a substructure where a large radius R can be introduced. The simplest case is for Z_{3} substructure. Namely, Z_{6-1} or Z_{12-1}, and Z_{12-1} has phenomenologically interesting models.

As an example, we use
J.-H. Kim, JEK, B. Kyae,

$$
\text { JHEP 0706, } 034 \text { (2007): }
$$

$$
0702.278
$$

$$
\begin{aligned}
\phi & =\left(\frac{5}{12} \frac{4}{12} \frac{1}{12}\right) \\
V & =\left(\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} ; \frac{5}{12} \frac{5}{12} \frac{1}{12}\right)\left(\frac{1}{4} \frac{3}{4} 0 ; 0^{5}\right)^{\prime} \\
a_{3} & =\left(\frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{-2}{3} \frac{-2}{3} ; \frac{2}{3} 0 \frac{2}{3}\right)\left(0 \frac{2}{3} \frac{2}{3} ; 0^{5}\right)^{\prime}
\end{aligned}
$$

The 4D gauge group is

$S U(3) \times S U(2) \times U(1)_{Y} \times U(1)^{4}$
$\times S O(10)^{\prime} \times U(1)^{13}$

We use partition function approach. Dixon-Kaplunovsky-Louis developed the threshold correction with the shift vector V. We generalized it to include the Wilson lines. The simplest nontrivial example for using this is for the case of Z_{12-1}.

- We obtained the R dependence [(34)-torus]

$$
\frac{4 \pi}{\alpha_{H_{i}}(\mu)}=\frac{4 \pi}{\alpha_{*}}+b_{H_{i}}^{0} \log \frac{M_{*}^{2}}{\mu^{2}}-\frac{b_{H}}{\mu^{2}}\left[\log \frac{R^{2}}{\alpha^{\prime}}+1.89\right]+\frac{\left(b_{H}+b_{G / H}\right)}{4}\left[\frac{2 \pi R^{2}}{\sqrt{3} \alpha^{\prime}}-0.30\right]
$$

reliable value for coupling constant at scale μ

But extradimensional field theory cannot calculate constant and R2 term. On the other hand, we have a definite prediction for these terms.

We can obtain 6D field theory by compactifying 4 internal spaces. This is another check of our partition function approach. Between R and string scale, the contribution to beta function coefficient is given by bH : the corresponding group may not be the SM group.

$$
\Delta_{i}=\frac{\left|G^{\prime}\right|}{|G|} b_{i}^{N=2} \int_{\mathrm{r}} \frac{d^{2} \tau}{\tau_{2}}\left(\hat{Z}_{\text {torus }}(\tau, \bar{\tau})-1\right)
$$

Integration in the modular space along the above formula a la Dixon-Kaplunovsky-Louis gives the compactification size dependence.

We use the modular parameter with the metric,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\vec{e}_{1}=(\sqrt{2}, 0) \\
\vec{e}_{2}=(-\sqrt{1 / 2}, \sqrt{3 / 2})
\end{array} ; \quad g_{a b}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)\right. \\
& \left\{\begin{array}{l}
\vec{e}^{*{ }^{*}}=(1 / \sqrt{2}, \sqrt{1 / 6}) \\
\vec{e}^{* 2}=(0,, \sqrt{2 / 3})
\end{array} ; \quad g^{a b}=\frac{1}{3}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\right.
\end{aligned}
$$

and obtain the R dependence,

$$
\frac{4 \pi}{\alpha_{H_{i}}(\mu)}=\frac{4 \pi}{\alpha_{*}}+b_{H_{i}}^{0} \log \frac{M_{*}^{2}}{\mu^{2}}-\frac{b_{H}}{\mu^{2}}\left[\log \frac{R^{2}}{\alpha^{\prime}}+1.89\right]+\frac{\left(b_{H}+b_{G / H}\right)}{4}\left[\frac{2 \pi R^{2}}{\sqrt{3} \alpha^{\prime}}-0.30\right]
$$

It is a reliable calculation, not like the expressions written in extra dimensional field theory [Dienes-Dudas-Ghergetta].
R-squared and constant terms are reliable, and predicts how gauge couplings behave above the so-called GUT scale.

Modulo Inv.

Gauge sym. must be broken.
Renormalized gauge coupling

$$
\begin{aligned}
& \frac{16 \pi^{2}}{g_{H}^{2}(\mu)} \approx \frac{16 \pi^{2}}{g_{*}^{2}}+b_{H}^{0} \ln \frac{M_{H}^{2}}{\mu^{2}}-\frac{1}{4} b_{G}^{N=2} \ln \frac{M_{H}^{2}}{M_{R}^{2}} \\
&\left(\text { Not }_{H}^{N=2}\right) \\
&+\frac{1}{4} b_{G}^{N=2}\left[\frac{2 \pi}{\sqrt{3}} \frac{M_{H}^{2}}{M_{t}^{2}}-2.19\right]
\end{aligned}
$$

$$
\mathrm{N}=2: \quad \mathrm{b} H+G / H=\underset{\mathrm{SU}(8) \mathrm{SO}(12)^{\prime} \mathrm{SU}(2)^{\prime}}{24,} \quad 0, \quad 48
$$

$\mathrm{N}=2: \quad \mathrm{b} H=13,11,89 / 5, \quad-2,5$ SU(3) SU(4) U(1)e SO(10)' U(1)c'
$N=1: ~ b H O=-3,1,33 / 5$ $\mathrm{SU}(3) \mathrm{SU}(4) \mathrm{U}(1) \mathrm{y}$

Actually, we need singlet Higgs VEVs to give large masses for exotic particles. Since SU(4) gives complcated form for its $\mathrm{U}(1)$ subgroup, we break $\mathrm{SU}(4)$ by VEVs of singlets. So, we consider only $\operatorname{SU}(2)$ of broken $\mathrm{SU}(4)$ and conside the $\mathrm{N}=2$ bi in terms of another parameter hi,

$$
b_{i}=h_{i}\left(\log \frac{M_{s}^{2}}{M_{R}^{2}}+1.89\right)
$$

The hypercharge definition must be made judiciously to avoid chiral exotics or even to remove all exotics.

Model E: $Y=\left(\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{-1}{2} \frac{-1}{2} ; 000\right)(000 ; 00000)^{\prime}, \quad \sin ^{2} \theta_{\mathrm{w}}=3 / 8$
Model S: $\tilde{Y}=\left(\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{-1}{2} \frac{-1}{2} ; 000\right)(001 ; 00000)^{\prime}, \quad \sin ^{2} \theta_{\mathrm{w}}=3 / 14$

Model E: $\quad 34.78 \leq\left(7 h_{3}-12 h_{2}+5 h_{1}\right) \leq 98.02$
$\sin ^{2} \theta_{W}\left(M_{Z}\right)=0.22306 \pm 0.00033, \quad \alpha_{3}=0.1216 \pm 0.0017$

$$
\text { Model S: } \quad \frac{M_{R}}{M_{Z}} \approx 1.70 \times 10^{15}, \quad \frac{M_{s}}{M_{R}} \approx 3.68
$$

6. Conclusion

We saw interesting explanations of SUGRA problems by orbifold compactification. Have pursued the GMSB possibility in orbifold compactification with desirable MSSM spectrum. Also, 6D SUSY GUT realized with KK mass dependent threshold corrections. These corrections are reliable unlike in extra-dimensional field theory. In some models,

- 3 families with no exotics. The GMSB with $\operatorname{SU}(5)^{\prime} 10+5^{*}$ at a stable vacuum. The MSSM spectrum: just one pair of Higgs doublets. R-parity embedding successful.
- Gauge coupling unification: nonprime orbifold with KK mass with R dep.

$$
\frac{4 \pi}{\alpha_{H_{i}}(\mu)}=\frac{4 \pi}{\alpha_{*}}+b_{H_{i}}^{0} \log \frac{M_{*}^{2}}{\mu^{2}}-\frac{b_{H}}{\mu^{2}}\left[\log \frac{R^{2}}{\alpha^{\prime}}+1.89\right]+\frac{\left(b_{H}+b_{G / H}\right)}{4}\left[\frac{2 \pi R^{2}}{\sqrt{3} \alpha^{\prime}}-0.30\right]
$$

-The orbifold compactification of $\mathrm{E}_{8} \mathrm{x} \mathrm{E}_{8}$ heterotic string gives enough good phenomenologies, not competed in other superstrings. Yet, to resolve the moduli stabil.

