Looking up at seesaw and GUT scales from TeV

Hitoshi Murayama (Berkeley/IPMU) Ritsumeikan GUT WS, Dec 19, Also based on works 2007. Fujii, T. Tsukamoto, M. Yamaguchi, Y. Okada, Y. Kawamura

The Question

- Neutrino physics has been full of surprises
- We've learned a lot in the last ~8 years
- We want to learn more
- What exactly can we learn from neutrinos?
 - Origin of neutrino mass?
 - Origin of baryon asymmetry?
 - Origin of universe?, Dec 18, 2007

The Question

- The seesaw mechanism has been the dominant paradigm for the origin of tiny neutrino mass
- Physics close to the GUT scale
- How do we know if it is true? Is there a way to test it experimentally?
- Short answer: No
- However, we can be convinced of it

How can it be possible at all?

- We can (hope to) do good measurements on observables at low energies (meV–TeV)
- If we know something about the boundary conditions at high energies, we can say something non-trivial about physics between the two energy scales
- We have to be very lucky to be able to do this Need the whole planets lined up!

Alignment of the Planets

Outline

- Why Neutrinos?
- The Big Questions
- Seesaw and SUSY-GUT
- Experimental Tests
- Conclusion

Why Neutrinos?

Interest in Neutrino Mass

 So much activity on neutrino mass already.

> Why am I interested in this? Window to (way) high energy scales beyond the Standard Model!

Why Beyond the Standard Model

- Standard Model is sooooo successful. But none of us are satisfied with the SM. Why?
- Because it leaves so many great questions unanswered

 \Rightarrow Drive to go beyond the Standard Model

• Two ways:

– Go to high energies

- Study rare, tiriy effects^{8, 2007}

Rare Effects from High-Energies

- Effects of physics beyond the SM as effective operators
 - $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda}\mathcal{L}_5 + rac{1}{\Lambda^2}\mathcal{L}_6 + \cdots$
- Can be classified systematically $\mathcal{L}_5 = (LH)(LH) \rightarrow \frac{1}{\Lambda}(L\langle H \rangle)(L\langle H \rangle) = m_{\nu}\nu\nu$
- $\mathcal{L}_{6} = QQQL, \bar{L}\sigma^{\mu\nu}W_{\mu\nu}He,$ $W^{\mu}_{\nu}W^{\nu}_{\lambda}B^{\lambda}_{\mu}, (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H), \cdots$

Unique Role of Neutrino Mass

- Lowest order effect of physics at short distances
- Tiny effect $(m_v/E_v)^2 \sim (0.1 \text{eV/GeV})^2 = 10^{-20}!$
- Inteferometry (i.e., Michaelson-Morley)
 - Need coherent source
 - Need interference (*i.e.*, large mixing angles)
 - Need long baseline

Nature was kind to provide all of them!

 "neutrino interferometry" (a.k.a. neutrino oscillation) a unique toel toostudy physics at 11

Ubiquitous Neutrinos

The Data

de Gouvêa's classification:

- "Indisputable"
 - Atmospheric
 - Solar
 - Reactor
- "strong"
 - Accelerator (K2K)
- And we shouldn't forget:
- "unconfirmed"
 - Accelerator (LSND)

Historic Era in Neutrino Physics

We learned:

- Atmospheric ν_μs are lost. P=4.2 10⁻²⁶ (SK) (1998)
- converted most likely to v_{τ} (2000)
- Solar v_e is converted to either v_μ or v_τ (SNO) (2002)
- Only the LMA solution left for solar neutrinos (Homestake+Gallium+SK+SNO) (2002)
- Reactor anti- v_e disappear (2002) and reappear (KamLAND) (2004)

What we learned

- Lepton Flavor is not conserved
- Neutrinos have tiny mass, not very hierarchical
- Neutrinos mix a lot

the first evidence for

incompleteness of Minimal Standard Model

Neutrinos do oscillate!

Ritsumeikan, Dec 18, 2007

Typical Theorists' View ca. 1990

- Solar neutrino solution *must* be small angle MSW solution because it's cute/rong!
- Natural scale for $\Delta m_{23}^2 \sim 10-100 \text{ eV}^2$ because it is cosmologically interesting
- Angle θ_{23} must be ~ V_{cb} =0.04 Wrong
- Atmospheric neutrino anomaly must gorong away because it needs a large angle !

The Big Questions

- What is the origin of neutrino mass?
- Did neutrinos play a role in our existence?
- Did neutrinos play a role in forming galaxies?
- Did neutrinos play a role in birth of the universe?
- Are neutrinos telling us something about unification of matter and/or forces?
- Will neutrinos give us more surprises?
 Big questions = tough questions to answer Ritsumeikan, Dec 18, 2007

Seesaw and SUSY-GUT

Seesaw Mechanism

- Why is neutrino mass so small?
- Need right-handed neutrinos to generate neutrino mass

$$\nu_L \quad \nu_R \binom{\text{neutral}}{m_D \quad M} \binom{\nu_L}{\nu_R} m_V =$$

To obtain $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim m_t$, $M_3 \sim 10^{14} \text{GeV}$

Grand Unification

- electromagnetic, weak, and strong forces have very different strengths
- But their strengths become the same at ~2×10¹⁶ GeV if supersymmetry
- To obtain

 $m_3 \sim (\Delta m_{atm}^2)^{1/2}, m_D \sim m_t$ $\Rightarrow M_3 \sim 10^{14} \text{ GeV!}$

Leptogenesis

- You generate Lepton Asymmetry first. (Fukugita, Yanagida)
- Generate L from the dire handed neutrino decay

$$N_1 \longrightarrow h_{1j} \searrow H$$

$$N_1 \longrightarrow h_{1k}^{*} \bigvee h_{lk}^{*} \bigvee h_{l$$

 $\Gamma(N_1 \to \nu_i H) - \Gamma(N_1 \to \overline{\nu}_i H) \propto \operatorname{Im}(h_{1j} h_{1k} h_{lk}^* h_{lj}^*)$

- L gets converted to B via EW anomaly
 ⇒ More matter than anti-matter
 ⇒ We have survived "The Great Annihilation"
- Despite detailed information on neutrino masses, it 22 still works (e.g. Bari, Buchmüller, Plümacher)

amplitude

of the universe

Ze

Origin of Universe

- Maybe an *even bigger* role: inflation
- Need a spinless field that
 - slowly rolls down the potential
 - oscillates around it minimum
 - decays to produce a thermal bath
- The superpartner of right-handed neutrino fits the bill
- When it decays, it produces the lepton asymmetry at the same time

(HM, Suzuki, Yanagida, Yokoyama)

 Decay products: supersymmetry and hence dark matter

Neutrino is mother of the Universe? Dec 18, 2007

Experimental Tests

Can we prove it experimentally?

- Short answer: no. We can't access physics at >10¹⁰ GeV with accelerators directly
- But: we will probably believe it if the following scenario happens
 Archeological evidences

A scenario to "establish" seesaw

- We find CP violation in neutrino oscillation
 - At least proves that CP is violated in the lepton sector
- U_{e3} is not too small

 At least makes it plausible that CP asymmetry in right-handed neutrino decay is not unnaturally suppressed

• But this is not enough Ritsumeikan, Dec 18, 2007

A scenario to "establish" seesaw

- LHC finds SUSY, ILC establishes SUSY
- no more particles beyond the MSSM at TeV scale
- Gaugino masses unify (two more coincidences)
- Scalar masses unify for 1st, 2nd generations (two for 10, one for 5*, times two)

 \Rightarrow strong hint that there are no additional particles beyond the MSSM below M_{GUT} except for gauge singlets.

Gaugino and scalars

Gaugino masses test Scalar masses test beta \bullet unification itself independent functions at all scales, of intermediate scales and depend on the particle extra complete SU(5) content Kawamura, HM, Yamaguchi multinlate $1/M_i$ [GeV⁻¹] $M_{\tilde{i}}^2 [10^3 \,{\rm GeV}^2]$ 400 0.01 D₁ Q₁ U₁ E₁ Η, 0.009 300 0.008 0.007 200 0.006 M₂ 0.005 100 0.004 0.003 0 M₃ 0.002 0.001 -1000 1011 1011 10¹⁴10¹⁶ 10⁸ 10⁸ 10¹⁴10¹⁶ 10^{2} 10^{5} 10^{5} 10^{2} O[GeV]Q [GeV] Ritsumeikan, Dec 18, 2007

28

gauginos, higgsinos

- charged ones "charginos" $(\bar{W}^{-}\bar{H}_{d}^{-})\begin{pmatrix} M_{2} & \sqrt{2}m_{W}\sin\beta\\ \sqrt{2}m_{W}\cos\beta & \mu \end{pmatrix}\begin{pmatrix} \bar{W}^{+}\\ \bar{H}_{u}^{+} \end{pmatrix}$
- neutral ones "neutralinos"

$$(\tilde{B}, \tilde{W}^{0}, \tilde{H}^{0}_{d}, \tilde{H}^{0}_{u}) \begin{pmatrix} M_{1} & 0 & -m_{Z}s_{W}c_{\beta} & m_{Z}s_{W}s_{\beta} \\ 0 & M_{2} & m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} \\ -m_{Z}s_{W}c_{\beta} & m_{Z}c_{W}c_{\beta} & 0 & -\mu \\ m_{Z}s_{W}s_{\beta} & -m_{Z}c_{W}s_{\beta} & -\mu & 0 \end{pmatrix} \begin{pmatrix} \tilde{B} \\ \tilde{W}^{0} \\ \tilde{H}^{0}_{d} \\ \tilde{H}^{0}_{u} \\ \tilde{H}^{0}_{u} \end{pmatrix}$$

 $(\tilde{\chi}_1^0 l^{\pm} \nu_l) (\tilde{\chi}_1^0 q \bar{q}'$ $\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow$

 $\rightarrow (\tilde{\chi}_1^0 l^+ l^-) (\tilde{\chi}_1^0 l'^+ l'^-)$ **~**0

Ritsumeikan, Dec 18, 2007

Model-independent parameter determination

- Chargino/neutralino mass matrices have four parameters M₁, M₂, μ, tanβ
- Can measure 2+4 masses
- can measure 10x2 neutralino cross sections $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_j^0) \quad \sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_i^+ \tilde{\chi}_j^-)$
- can measure 3x2 chargino cross sections

 $\begin{array}{c} \mbox{input} & \mbox{fit} \\ M_2 & 152 \ \mbox{GeV} & 152 \ \pm 1.8 \ \mbox{GeV} \\ \mu & 316 \ \mbox{GeV} & 316 \ \pm 0.9 \ \mbox{GeV} \\ \mbox{tan} \ \ \beta & 3 & \ 3 \ \pm 0.7 \\ M_1 & 78.7 \ \mbox{GeV} & 78.7 \ \pm 0.7 \ \mbox{GeV}_2 \end{array}$

A scenario to "establish" seesaw

- Next generation experiments discover neutrinoless double beta decay
- Say, $\langle m_v \rangle_{ee} \sim 0.1 \mathrm{eV}$
- There must be new physics below Λ~10¹⁴GeV that generates the Majorana neutrino mass

 $\mathcal{L}_5 = (LH)(LH) \rightarrow \frac{1}{\Lambda}(L\langle H \rangle)(L\langle H \rangle) = m_{\nu}\nu\nu$

 But it can also happen with Rparity violating SUSY

A scenario to "establish" seesaw

- It leaves the possibility for *R*-parity violation
- Consistency between cosmology, dark matter detection, and LHC/ILC will remove the

Need "New Physics" $\Lambda < 10^{14} GeV$

• Now that there must be D=5 operator at $\Lambda < a$ few $\times 10^{14}$ GeV $< M_{GUT}$, we need new particles below M_{GUT}

 $\mathcal{L}_5 = (LH)(LH) \rightarrow \frac{1}{\Lambda}(L\langle H \rangle)(L\langle H \rangle) = m_{\nu}\nu\nu$

 Given gauge coupling and gaugino mass unification, they have to come in complete SU(5) multiplets

Scalar Mass Unification

- Because the scalar masses also appear to unify, their running constrain gauge non-singlet particle content below the **GUT** scale
- Need to see the level of mismatch generated by 3×24 (modified Type I), 15+15^{*} (Type II), compared to 3×1 (Standard seesaw) that does not modify the scalar mass unification

High precision needed

Λ = 10 ¹⁴ GeV	Standar	Modified	Type-II
	d	Type-I	
	seesaw		
New	3×1	3×24	15+15*
particles			
$(m_Q^2 -$	1.90	2.41	2.04
$(m_U^2)/M_1^2$			
$(m_Q^2 -$	Matt Bucl	cle y,21,518	21.70
$m_{E}^{2})/M_{1}^{2}$	Ritsumeikan, Dec	18, 2007	

High precision needed

Λ= 10 ¹³ GeV	Standar	Modified	Type-II
	d	Type-I	
	seesaw		
New	3×1	3×24	15+15*
particles			
$(m_Q^2 -$	1.90	4.68	2.29
$(m_U^2)/M_1^2$			
$(m_Q^2 -$	Matt Bucl	cle y,91,512	22.60
$m_{E}^{2})/M_{1}^{2}$	Ritsumeikan, Dec	18, 2007	

39

Can we do this?

- CMS: in some cases, squark masses can be measured as $\Delta m \sim 3$ GeV, if LSP mass provided by ILC, with jet energy scale suspect. No distinction between u_R and d_R (Chiorboli)
- ILC measures gaugino mass and slepton mass at permille levels: negligible errors (HM)
- squark mass from kinematic endpoints in jet energies: Δ*m*~a few GeV (Feng-Finnell)
- Can also measure squark mass from the threshold: $\Delta m \sim 2-4$ GeV (Blair)
- 1% measurement of *m*² Not inconceivable

Threshold scan @ ILC

Sparticle	True	True	Fit Mass	Fit Width	Fit Mass Error
	Mass	Width	Error	Error	(Width Fixed)
$ ilde{\mu}_R$	143	0.20	0.18	0.06	0.15
$ ilde{\mu}_L$	202	0.25	0.30	0.11	0.26
$ ilde{u}_R$	520	25	11	14	2.7
$ ilde{u}_L$	537	30	5.3	9.0	1.9
\tilde{d}_R	520	25	24	30	5.8
\widetilde{d}_L	543	30	8.0	12	2.7
χ_1^+	175	0.002	0.17	0.003	0.09
χ_2^+	364	1.9	0.44	0.24	0.23

100 fb⁻¹ Grahame Blair

Comments

- Threshold behavior for squark-pair production has not been calculated with QCD effects (à la ttbar threshold)
- Mass differences presumably better measured
 - Jet energy scale uncertainties cancel
 - Difference in end points
 - But flavor tagging a challenge

Next Leading Order

- At NLO, things depends on more details
- Use Snowmass benchmark points to

m_0 400400200800100 $M_{1/2}$ 400400100200300 A_0 0000300tan β 2102102.1	study 1 2 3 4 5						
$M_{1/2}$ 400400100200300 A_0 0000300tan β 2102102.1	m_0	400	400	200	800	100	
A_0 0000300tan β 2102102.1	<i>M</i> _{1/2}	400	400	100	200	300	
tan β 2 10 2 10 2.1	A_0	0	0	0	0	300	
	tan β 2 10 2 10 2.1						
$Sgn \mu + + + + + + + + + + + + + + + + + + $	sgn µ	+	+		+	+	

Needed accuracy (3o)

Needed accuracy (3σ)

What about Yukawa couplings?

- Yukawa couplings can in principle also modify the running of scalar masses
- We may well have an empirical evidence against large neutrino Yukawa coupling and large M by the lack of lepton-flavor violation

If this works out

- Evidence for SU(5)-like unification hard to ignore
- Only three possible origins of Majorana neutrino mass < 10¹⁴ GeV consistent with gauge coupling and gaugino unification
- Only one consistent with scalar mass unification
- Could well "establish" the standard seesaw mechanism this way

Leptogenesis?

- No new gauge non-singlets below M_{GUT}
- Either
 - Baryogenesis due to particles we know at TeV scale, *i.e.*, electroweak baryogenesis
 - Baryogenesis due to gauge-singlets well above TeV, *i.e.*, leptogenesis by v_R
- The former can be excluded by colliders & EDM
- The latter gets support from Dark Matter concordance, *B*-mode CMB fluctuation that point to "normal" cosmology after inflation
- Ultimate: measure asymmetry in background v's

Origin of the Universe

- Right-handed scalar neutrino: V=m²\u03c6²
- *n_s*~0.96
- *r*~0.16
- Need *m*~10¹³GeV
- Completely consistent with latest WMAP
- Detection possible in the near future

Alignment of the Planets

Conclusions

- *Revolutions in neutrino physics*
- Neutrino mass probes very high-energy physics
- But how do we know?
- By collection of experiments, with surprisingly important role of colliders
- We could well find convincing enough experimental evidence for seesaw mechanism
- May even learn something about our existence, the birther of the priverse itself

Immediate Questions

- Dirac or Majorana?
- Absolute mass scale?
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?

Immediate Questions

- Dirac or Majorana?
- Absolute mass scale?
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?

Extended Standard Model

- Massive Neutrinos \Rightarrow Minimal SM incomplete
- How exactly do we extend it?
- Abandon either
 - Minimality: introduce new unobserved light degrees of freedom (right-handed neutrinos)
 - Lepton number: abandon distinction between neutrinos and anti-neutrinos and hence matter and anti-matter
- Dirac or Majorana neutrino
- Without knowing which, we don't know how to extend the Standard Model

 $0 \nu \beta \beta$: $nn \rightarrow ppe^-e^-$ with no neutrinos

Neutrinoless Double Beta Decay

- $2\nu\beta\beta$: $nn \rightarrow ppe^-e^-\nu\nu$ happens in the SM (very rare)
- 0 νββ: nn → ppe⁻e⁻ with no neutrinos does not happen in the SM, violates lepton number

 $< m_{\nu e} > = \sum_{i} m_{\nu i} U_{ei}^2$

- Possible if neutrinos Majorana
- Matrix element proportional to

Three Types of Mass Spectrum

- Degenerate
 - All three around >0.1eV with small splittings
 - Possible even after WMAP+2dF: m<0.23eV
 - May be confirmed by KATRIN, cosmology
 - $|< m_{ve}>|=|\Sigma_i m_{vi} U_{ei}^2|>m\cos^2 2\theta_{12}>0.07m$
- Inverted
 - − $m_3 \sim 0$, $m_1 \sim m_2 \sim (\Delta m_{23}^2)^{1/2} \approx 0.05 \text{eV}$
 - May be confirmed by long-baseline experiment with matter effect
 - $|\langle m_{ve} \rangle| = |\Sigma_i m_{vi} U_{ei}^2| > (\Delta m_{23}^2)^{1/2} \cos^2 2\theta_{12} > 0.0035 \text{eV}$
- Normal
 - − $m_1 \sim m_2 \sim 0$, $m_3 \sim (\Delta m_{23}^2)^{1/2} \approx 0.05 \text{eV}$
 - $|\langle m_{ve}\rangle| = |\Sigma_i m_{vi} U_{ei}^2|$ may be zero even if Majorana

HM, Peña-Garay

-	normal	inverted degenerate
n^2		

Immediate Questions

- Dirac or Majorana?
- Absolute mass scale?
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?

T2K (Tokai to Kamioka)

Can measure $\sin^2 2\theta_{23}$ at 1% level

Immediate Questions

- Dirac or Majorana?
- Absolute mass scale?
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?

Now that LMA is confirmed...

- Dream case for neutrino oscillation physics!
- Δm^2_{solar} within reach of long-baseline expts
- Even CP violation may be probable
 - neutrino superbeam
 - muon-storage ring neutrino factory

$$P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = -16s_{12}c_{12}s_{13}c_{13}^{2}s_{23}c_{23}$$
$$\sin\delta\sin\left(\frac{\Delta m_{12}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{13}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{23}^{2}}{4E}L\right)$$

- Possible only if:
 - $-\Delta m_{12}^2$, s₁₂ large enough (LMA)
 - θ_{13} large enough

θ_{13} decides the future

- The value of θ_{13} crucial for the future of neutrino oscillation physics
- Determines the required facility/parameters/baseline/energy
- Two paths to determine θ_{13}
 - Long-baseline accelerator neutrino oscillation
 - Reactor neutrino experiment with two detectors

Measurements of CP-violation

CP violation with high luminosity superbeams feasable
 consistivity is *S* and dependent

• sensitivity is δ_{CP} dependent

Huber, ML, Winter, hep-ph/020435:

M. Lindner – 27 –

Reactor experiments

- Double-CHOOZ
 - Aiming at $\sin^2 2\theta_{13} \sim 0.03$
- Daya Bay
 - Aiming at $\sin^2 2\theta_{13} \sim 0.01$

Daya Bay

Reactor experiment to look for $sin^22\theta_{13}$ down to ~0.01

Need for new facilities

 The answer depends on what we will find in the near future

What about the Big Questions?

- What is the origin of neutrino mass?
- Did neutrinos play a role in our existence?
- Did neutrinos play a role in forming galaxies?
- Did neutrinos play a role in birth of the universe?
- Are neutrinos telling us something about unification of matter and/or forces?
- Will neutrinos give us more surprises?
 Big questions = tough questions to answer Ritsumeikan, Dec 18, 2007