Unified Modes and Collider Experiments

Nobuchika Okada (KEK)

GUT07, Dec. 17, 2007 @ Ritsumeikan University

<u>1. Introduction</u>

Future colliders: hadron collider & lepton collider

Large Hadron Collider(LHC) Coming soon! (2008)

Hadron collider: pp $\sqrt{s} = 14 \text{ TeV}$

Initial states: gg, $gq(\bar{q})$, $g\bar{q}$

International Linear Collider (ILC)

from 2015 ?

Lepton collider: $e^+e^ \sqrt{s} = 500 \text{ GeV} - 1 \text{ TeV}$

Initial states e^+e^-

Purpose of future colliders

Discovery of Higgs boson ← the last particle in the SM to be observed New Physics beyond the SM

Precise measurements of Higgs boson and New Physics properties

New couplings, masses, spins etc of new particles

LHC: high energy machine → high discovery potential, can find Higgs boson and New Physics
ILC: precise measurement → discriminate New Physics Models

Well-motivated New Physics Model \rightarrow <u>appears around 1 TeV</u>

→ accessible to LHC & ILC

<u>Unified Model</u>, in particular, GUT like unified model appears at M_{unify}

1 TeV $\ll M_{unify}$ \rightarrow Very difficult to say something about Unification

But..

Let us try to tell some information about Unified Models

For example, Grand Unification is <u>suggested</u> by current experiments

- → precise measurements of the SM gauge couplings
 - + weak scale SUSY

Even though collider energy << Unification Scale,

precise measurements of physics observables

their <u>RGE extrapolation</u>

can provide us some information about Unified Theories (UV theories)

Discovery of Higgs boson & New Particles

Indirect information

Higgs mass \rightarrow solving RGEs toward high energy

→ some information of Unified Models

new particle masses \rightarrow if the origin of masses lies at energies

higher than unified models, resultant masses

have some remnants of unified models

Direct information

some exotic particles with mass < O(1 TeV) predicted by some models

2. Indirect information

2.1 Discovery of SUSY and soft mass spectrum

Discovery of SUSY at LHC

Precise measurements of soft masses (LHC & ILC)

→ Information of SUSY breaking mediation

<u>The mediation scale > Unified Model Scale</u>

→ <u>soft mass spectrum can carry information about Unified Model</u>

Example 1: CMSSM-like model

SUSY breaking mediation happens at GUT scale

Gauge coupling unification → all the gauginos are in the same multiplet → gaugino masses are unified at GUT scale <u>Sfermion masses</u> → (s)leptons and (s)quarks are unified into the same multiplets, but <u>there is a model dependence</u>

> SO(10) GUT matter 16 $m_{\tilde{Q}} = m_{\tilde{U}} = m_{\tilde{D}} = m_{\tilde{L}} = m_{\tilde{E}}$ SU(5) GUT matter 5* + 10 \rightarrow $m_{\tilde{D}} = m_{\tilde{L}} \neq m_{\tilde{Q}} = m_{\tilde{U}} = m_{\tilde{E}}$

Gaugino mass unification

$$\frac{M_{1}(\mu)}{\alpha_{1}(\mu)} = \frac{M_{2}(\mu)}{\alpha_{2}(\mu)} = \frac{M_{3}(\mu)}{\alpha_{3}(\mu)}$$

Sfermion mass spectrum (1,2 generation)

Example 2: discriminate seesaw modes

Seesaw models \rightarrow natural explanation of tiny neutrino masses

SU(5) GUT + seesaw mechanism

 $M = 10^{12-14} \text{ GeV}$

Precision measurements of sparticle mass spectrum @ LHC + ILC

highly depends on sparticel mass spectrum

An example

mass/mass splitting	LCC1 Value		LHC	ILC 500
$m(\chi_1^0)$	95.5	Ŧ	4.8	0.05
$m(\bar{\chi}_{2}^{0}) - m(\bar{\chi}_{1}^{0})$	86.1	±	1.2	0.07
$m(\bar{\chi}_{3}^{0}) - m(\bar{\chi}_{1}^{0})$	261.2	±	@a	4.0
$m(\bar{\chi}_{4}^{0}) - m(\bar{\chi}_{1}^{0})$	280.1	±	2.2 ^a	2.2
$m(\bar{\chi}_1^+)$	181.7	±	-	0.55
$m(\bar{\chi}_{2}^{+})$	374.7	±	-	-
$m(\bar{e}_R)$	143.1	±	-	0.05
$m(\overline{e}_R) - m(\overline{\chi}_1^0)$	47.6	±	1.0	0.2
$m(\mu_R) - m(\chi_1^0)$	47.5	±	1.0	0.2
$m(\bar{\tau}_{1}) - m(\bar{\chi}_{1}^{0})$	38.6	±	5.0	0.3
$BR(\bar{\chi}_2^0 \rightarrow \bar{e}e)/BR(\bar{\chi}_2^0 \rightarrow \bar{\tau}\tau)$	0.077	±	0.008	
$m(\overline{e}_L) - m(\overline{\chi}_1^0)$	109.1	±	1.2	0.2
$m(\bar{\mu}_L) - m(\bar{\chi}_1^0)$	109.1	±	1.2	1.0
$m(\bar{\tau}_2) - m(\bar{\chi}_1^0)$	112.3	±	-	1.1
$m(\bar{\nu}_e)$	186.2	±	-	1.2
m(h)	113.68	±	0.25	0.05
m(A)	394.4	±	*	(> 240)
$m(\overline{u}_R), m(d_R)$	548.	Ŧ	19.0	16.0
$m(\overline{s}_R), m(\overline{c}_R)$	548.	±	19.0	16.0
$m(\overline{u}_L), m(\overline{d}_L)$	564., 570.	±	17.4	9.8
$m(\overline{s}_L), m(\overline{c}_L)$	570., 564.	\pm	17.4	9.8
$m(\overline{b}_1)$	514.	\pm	7.5	5.7
$m(\overline{b}_2)$	539.	±	7.9	6.2
$m(\overline{t_1})$	401.	\pm	(> 270)	-
$m(\overline{g})$	611.	Ŧ	8.0	6.5

Example 3: discriminate seesaw modes in GMSB

SU(5) GUT + type II and III seesaw in GMSB scenario Mohapatra, N.O. & Yu, work in progress Related work: Mohapatra, Okada & Yu, arXiv:0711.0956 [hep-ph]

Type II → 15*+15 Type III → 24s
These fields can be identified as
the messenger fields in GMSB scenario

<u>Messenger scale → Seesaw scale</u>

Mass spectrum @ messenger (seesaw) scale

 $M_{i}(M) = \frac{\alpha_{i}(\mu)}{4\pi} \frac{F}{M} N_{mess}$ $\tilde{m}_{i}^{2}(M) = 2c_{i} \left(\frac{\alpha_{i}(\mu)}{4\pi}\right)^{2} \left|\frac{F}{M}\right|^{2} N_{mess}$ $\frac{\tilde{m}_{i}^{2}(M)}{M_{i}(M)^{2}} = \frac{c_{i}}{N_{mess}}$

 $\begin{cases} Type II \rightarrow 15^{*}+15 \rightarrow N_{mess} = 7 \\ Type III \rightarrow three 24s \rightarrow N_{mess} = 15 \end{cases} \rightarrow difference in sfermion mass spectrum \end{cases}$

Precision measurements in accuracy < O(a few %) can discriminate between type II and type III seesaw

2-2: Higgs mass measurement and UV theory

Once Higgs boson is discovered and its mass is measured,

RGE running of Higgs mass (quartic Higgs coupling) tells us something.

What if UV theory is non-SUSY, what does the instability mean?

<u>Gauge-Higgs Unification</u> model?

Bulk Standard Model

5-dim. theory compactified on orbifold S^1/Z_2

All SM fields reside in the bulk

<u>Higgs boson is unified into 5th component of gauge fields</u> <u>in higher dimension</u> **<u>Basic structure</u>** 5dim SU(3) gauge theory (toy model)

Impose non-trivial boundary conditions (parity assignment)

are Z2 even fields, others odd fields

Zero modes for odd fields are project out,

So SU(3) is broken to SU(2) times U(1) by this parity assignment

5th component of 5dim gauge field \rightarrow scalar in 4D theories

We identify ``H'' as Higgs doublet in the SM \rightarrow gauge-Higgs unification

$$\mathcal{L}_{5}^{gauge} = -\frac{1}{4} F^{aMN} F^{a}_{MN} = -\frac{1}{4} F^{a\mu\nu} F^{a}_{\mu\nu} + \frac{1}{2} F^{a\mu}_{5} F^{a}_{5\mu}$$
$$\frac{1}{2} F^{a\mu}_{5} F^{a}_{5\mu} \rightarrow (D_{\mu}H)^{\dagger} (D_{\mu}H) \qquad \text{Kinetic term for Higgs is included as}$$
$$H : (2, \pm 1/2) \qquad \text{5dim SU(3) gauge interaction}$$

<u>5 dimensional gauge symmetry \rightarrow No mass and quartic coupling @ tree</u> Even at quantum level, there is **no divergence**

interaction

Phenomenologically interesting observation ``<u>Gauge-Higgs Condition</u>" \rightarrow realization of gauge-Higgs unification at UV is equivalent to imposing ``vanishing quartic Higgs couping" at $\Lambda_{cut} = 1/(2\pi R)$ Haba, Matsumoto, N.O.&Yamashita, JHEP 0602, 073 (2006)

Application of the guage-Higgs condition

UV completion of the SM by (5D) gauge-Higgs unification

→Higgs boson mass prediction

as a function of the compactification scale by imposing the condition $\lambda_H(\Lambda) = 0$

Gogoladze, N.O. & Shafi

2.3: new particle & impact on Higgs boson phenomenology at LHC

In <u>Gauge-Higgs unification (GHU)</u> and <u>Universal Extra Dimension (UED)</u> KK excited states of SM particles

Top quark KK modes strongly couple to Higgs boson

 \rightarrow some impacts on Higgs boson phenomenology

Higgs production @ LHC

Primary discovery mode for $m_H < 2m_W$

<u>New diagrams with new particles running in loops</u>

Difference between GHU and UED

Maru & N.O.

e-Print: arXiv:0711.2589 [hep-ph]

vertex

UED & gauge-Higgs → KK modes of SM particles Top quark KK modes → big effects in Higgs couplings

$$\begin{cases} \text{UED: Two KK top with mass} & m_t^{(n)} = \sqrt{\left(\frac{n}{R}\right)^2 + m_t^2} & -\frac{m_t}{v} \left(\frac{m_t}{m_t^{(n)}}\right) h \\ \\ \text{Gauge-Higgs:} & m_{t+}^{(n)} = \frac{n}{R} + m_t & -\frac{m_t}{v} h \\ \\ & m_{t-}^{(n)} = \frac{n}{R} - m_t & +\frac{m_t}{v} h \end{cases}$$

Difference of mass spectrum and coupling with Higgs boson results in difference of Higgs effective coupling

Higgs boson production cross section through gluon fusion in UED and GHU

3. Direct information

Discovery of some new particle \rightarrow evidence of some Unified Models

Example: Diquark Higgs production at LHC

Mohapatra, N.O. & Yu e-Print: arXiv:0709.1486 [hep-ph] to appear in PRD

<u>A class of New Physics Models with B-L gauge symmetry</u>

(Pati-Salam model, SO(10) GUT,...)

<u>See-saw mechanism</u> → tiny neutrino mass associated with B-L symmetry → many exotic particles carrying

B&L numbers

If <u>exotic particles</u> are light \rightarrow production at LHC

New possibility: color sextet Higgs (diquark Higgs) boson associated with <u>B-L symmetry breaking</u>

B-L breaking scale is the see-saw scale $\sim 10^{11-14}$ GeV,

so that exotic particles have mass around the see-saw scale

How can some exotic particle be light?

→ in a class of SUSY Pati-Salam Models, such particles can arise as NG bosons through accidental global symmetry due to supersymmetry

Chacko & Mohapatra, PRD 59 055004 (1999)

Dutta, Mimura & Mohapatra, PRL 96 061801 (2006)

Diquark Higgsbaryon number -2/3
color sextet
mass around 100GeV-1TeV
R-parity Even \rightarrow resonant production at LHC
plays the important role in $n - \bar{n}$ oscillation

Gauge group: $SU(2)_L \times SU(2)_R \times SU(4)_c$

Matter:
$$\psi : (2, 1, 4) \oplus \psi^c : (1, 2, \overline{4})$$

Higgs: ϕ_1 : $(2, 2, 1) \oplus \phi_{15}$: (2, 2, 15) for fermion masses

 Δ^c : (1, 3, 10) $\oplus \overline{\Delta}^c$: (1, 3, $\overline{10}$) to break B-L symmetry

 Ω : (1, 3, 1) to reduce too many global symmetries S: (1, 1, 1)

 $W_H = \lambda_1 S(\Delta^c \overline{\Delta}^c - M_{\Delta}^2) + \mu_i \operatorname{Tr} (\phi_i \phi_i) + \lambda_C \Omega \Delta^c \overline{\Delta}^c$ $W_Y = h_1 \psi \phi_1 \psi^c + h_{15} \psi \phi_{15} \psi^c + f \psi^c \Delta^c \psi^c.$ **B-L symmetry breaking:** $\langle \Delta^c \rangle$, $\langle \overline{\Delta}^c \rangle \neq 0$

$$SU(3)_{c}$$

$$\Delta^{c}: (1, 3, 10) \qquad 6: \qquad \Delta_{u^{c}u^{c}} \Delta_{u^{c}d^{c}}, \ \Delta_{d^{c}d^{c}}$$

$$3: \qquad \Delta_{u^{c}\nu^{c}}, \ \Delta_{u^{c}e^{c}}, \ \Delta_{d^{c}\nu^{c}}, \ \Delta_{d^{c}e^{c}}$$

$$1: \qquad \langle \Delta_{\nu^{c}\nu^{c}} \rangle = v_{B-L}, \ \Delta_{\nu^{c}e^{c}} \Delta_{\nu^{c}\nu^{c}}$$

$$SU(2)_L \times SU(2)_R \times SU(4)_c \to G_{SM}$$

 $W_Y \supset f\psi^c \Delta^c \psi^c \to fv_{B-L} \nu^c \nu^c$: right-handed neutrino mass

Global symmetry in the Higgs superpotential

 $U(10,c) \times SU(2) \rightarrow U(9,c) \times U(1)$: <u>21 NG modes</u>

<u>9 eaten, leaving 12 d.o.f.</u> → Diquark Higgs

$$W = \lambda_A \frac{(\Delta^c \overline{\Delta}^c)^2}{M_{P\ell}} + \lambda_B \frac{(\Delta^c \Delta^c)(\overline{\Delta}^c \overline{\Delta}^c)}{M_{P\ell}} + \lambda_C \Delta^c \overline{\Delta}^c \Omega + \lambda_D \frac{\operatorname{Tr}(\phi_1 \Delta^c \overline{\Delta}^c \phi_{15})}{M_{P\ell}}$$

$$\Rightarrow m_\Delta \sim \lambda_B \frac{v_{B-L}^2}{M_{P\ell}} = 100 \text{ GeV} - 1 \text{ TeV with } v_{B-L} \sim 10^{11} \text{ GeV}$$

Coupling between diquark and fermions

$$W_Y \supset f\psi^c \Delta^c \psi \to f_{ij} \Delta_{u^c u^c} \ u_i^c u_j^c$$

Diquark Higgs: couples to both up-type quarks

baryon number -2/3

color sextet

mass around 100GeV-1TeV

R-parity Even

Phenomenological constraints on Yukawa coupling

$$W_Y \supset f\psi^c \Delta^c \psi \to f_{ij} \Delta_{u^c u^c} \ u_i^c u_j^c$$

Only up-type quarks are involved

Constraints by rare processes

For $m_{\Delta} \sim \mathcal{O}(100 \text{GeV})$

LHC phenomenology

It is possible to produce Diquark Higgs at hadron colliders

through uu or anti-u anti-u annihilations

We concentrate on the final states which include

at least one (anti-) top quark

Top quark with mass around 175 GeV electroweakly decays before hadronizing, so can be <u>an ideal tool to probe new physics!</u>

So, our target is
$$\begin{cases} uu \to \overline{\Delta}_{u^c u^c} \to tt \text{ or } t + \text{jet} \\ \overline{u}\overline{u} \to \overline{\Delta}_{u^c u^c}^* \to \overline{tt} \text{ or } \overline{t} + \text{jet} \end{cases}$$

These processes have no Standard Model counterpart!As a conservative studies, we consider $t\overline{t}$ pair productionin the Standard Model as backgrounds

To measure diquark mass (final state invariant mass)

top quark identification

difficult to tell top or anti-top?

Basics formulas

$$uu o \overline{\Delta}_{u^c u^c} o tt \text{ or } t + \text{jet} \quad (\overline{u}\overline{u} o \overline{\Delta}_{u^c u^c}^* o \overline{tt} \text{ or } \overline{t} + \text{jet})$$

$$\frac{d\sigma(uu \to \overline{\Delta}_{u^{c}u^{c}} \to tt)}{d\cos\theta} = \frac{|f_{11}|^{2} |f_{33}|^{2}}{16\pi} \frac{\hat{s} - 2m_{t}^{2}}{(\hat{s} - m_{\Delta}^{2})^{2} + m_{\Delta}^{2}\Gamma_{tot}^{2}} \sqrt{1 - \frac{4m_{t}^{2}}{\hat{s}}} \\ \frac{d\sigma(uu \to \overline{\Delta}_{u^{c}u^{c}} \to t + jet)}{d\cos\theta} = \frac{|f_{11}|^{2} (|f_{13}|^{2} + |f_{23}|^{2})}{8\pi\hat{s}} \frac{(\hat{s} - m_{\Delta}^{2})^{2} + m_{\Delta}^{2}\Gamma_{tot}^{2}}{(\hat{s} - m_{\Delta}^{2})^{2} + m_{\Delta}^{2}\Gamma_{tot}^{2}}.$$

No angle dependence

with the total decay width as the sum if each partial decay width

$$\begin{split} \Gamma(\overline{\Delta}_{u^{c}u^{c}} \to uu, cc) &= \frac{3}{16\pi} |f_{11,22}|^{2} m_{\Delta}, \\ \Gamma(\overline{\Delta}_{u^{c}u^{c}} \to tt) &= \frac{3}{16\pi} |f_{33}|^{2} m_{\Delta} \sqrt{1 - \frac{4m_{t}^{2}}{m_{\Delta}^{2}}} \left(1 - \frac{2m_{t}^{2}}{m_{\Delta}^{2}}\right) \\ \Gamma(\overline{\Delta}_{u^{c}u^{c}} \to uc) &= \frac{3}{8\pi} |f_{12}|^{2} m_{\Delta}, \\ \Gamma(\overline{\Delta}_{u^{c}u^{c}} \to ut, ct) &= \frac{3}{8\pi} |f_{13,23}|^{2} m_{\Delta} \left(1 - \frac{m_{t}^{2}}{m_{\Delta}^{2}}\right)^{2}. \end{split}$$

At Tevatron:
$$\sigma(p\overline{p} \to u_i u_j) = \int dx_1 \int dx_2 \int d\cos\theta f_u(x_1, Q^2) f_{\overline{u}}(x_2, Q^2)$$

 $\times \frac{d\sigma(uu \to \Delta_{u^c u^c} \to u_i u_j; \widehat{s} = x_1 x_2 E_{\text{CMS}}^2)}{d\cos\theta},$

$$\begin{array}{ll} \underline{\text{At LHC}:} & \sigma(pp \to u_i u_j) &= \int dx_1 \int dx_2 \int d\cos\theta f_u(x_1,Q^2) f_u(x_2,Q^2) \\ & \times & \frac{d\sigma(uu \to \Delta_{u^c u^c} \to u_i u_j; \, \widehat{s} = x_1 x_2 E_{\mathsf{CMS}}^2)}{d\cos\theta}, \end{array}$$

$$\frac{d\sigma(pp \to u_i u_j)}{dM_{u_i u_j}} = \int d\cos\theta \int_{\frac{M_{u_i u_j}}{E_{CMS}^2}}^{1} dx_1 \frac{2M_{u_i u_j}}{x_1 E_{CMS}^2}$$

$$\times \qquad f_u(x_1, Q^2) f_u \left(\frac{M_{u_i u_j}^2}{x_1 E_{CMS}^2}, Q^2\right) \frac{d\sigma(uu \to \Delta_{u^c u^c} \to u_i u_j)}{d\cos\theta}$$

$$\frac{d\sigma(pp \to u_i u_j)}{d\cos\theta} = \int_{\text{M_{cut}}}^{E_{\text{CMS}}} dM_{u_i u_j} \int_{\frac{M_{u_i u_j}}{E_{\text{CMS}}^2}}^{1} dx_1$$

$$\times \qquad \frac{2M_{u_i u_j}}{x_1 E_{\text{CMS}}^2} f_u(x_1, Q^2) f_u\left(\frac{M_{u_i u_j}}{x_1 E_{\text{CMS}}^2}, Q^2\right) \frac{d\sigma(uu \to \Delta_{u^c u^c} \to u_i u_j)}{d\cos\theta}$$

* <u>We employ CTEQ5M for the parton distribution functions (pdf)</u>

Analysis I

Example:
$$f_{ij} = \begin{bmatrix} 0.3 & 0 & 0.3 \\ 0 & 0 & 0 \\ 0.3 & 0 & 0.3 \end{bmatrix}$$

satisfies the constraints from rare decay process

Tevatron bound on Diquark Higgs mass

Top pair production cross section measured at **Tevatron**

$$ightarrow \sigma(p\overline{p}
ightarrow \overline{\Delta}_{u^{c}u^{c}}
ightarrow tt,ut)\lesssim$$
1.5pb

Differential cross section as a function of the invariant mass @ LHC

Diquark has a baryon number & LHC is ``pp'' machine $\rightarrow \sigma(tt) \gg \sigma(\overline{tt}), \quad \sigma(t+jet) \gg \sigma(\overline{t}+jet)$

Angular distribution of the cross section @ LHC

Diquark is a scalar \rightarrow No angular dependence

SM backgrounds \rightarrow gluon fusion \rightarrow peak forward & backward region

<u>Analysis II: type II see-saw dominant case</u>

When we impose left-right symmetry on the model

$$\rightarrow \Delta^c$$
 is accompanied by $\overline{\Delta}$: $(3, 1, \overline{10})$

 $W = f\psi\bar{\Delta}\psi \supset f\nu_L \Delta_T \nu_L$

Assume type II see-saw dominance $\rightarrow m_{\nu} = f v_T$

Direct relation between collider phenomenology and neutrino <u>oscillation data!</u>

$$\mathbf{Ex}) \quad f_{ij} = \begin{bmatrix} 0.27 & -0.48 & -0.47 \\ -0.48 & \mathbf{0} & -0.38 \\ -0.47 & -0.38 & 0.2 \end{bmatrix}$$

This can fit the neutrino oscillation data

$$\begin{split} \Delta m^2_{12} &= 8.9 \times 10^{-5} \, \mathrm{eV}^2, \ \Delta m^2_{23} &= 3 \times 10^{-3} \, \mathrm{eV}^2, \\ \sin^2 \theta_{12} &= 0.32, \ \sin^2 2\theta_{23} &= 0.99, \ |U_{e3}| &= 0.2, \ v_T = 0.1 \, \mathrm{eV} \end{split}$$

Only the inverted hierarchical case is possible

Tevatron bound on Diquark Higgs mass

Top pair production cross section at Tevatron

$$\sigma(t\bar{t}) = 7.3 \pm 0.5(\text{stat}) \pm 0.6(\text{syst}) \pm 0.4(\text{lum}) \text{ pb}$$

 $ightarrow \sigma(p\overline{p}
ightarrow \overline{\Delta}_{u^{c}u^{c}}
ightarrow tt,ut)\lesssim$ 1.5pb

Differential cross section as a function of the invariant mass @LHC

 $E_{CMS} = 14 \text{ TeV}$

Diquark has a baryon number & LHC is ``pp'' machine $\rightarrow \sigma(tt) \gg \sigma(\overline{tt}), \quad \sigma(t+jet) \gg \sigma(\overline{t}+jet)$

Angular distribution of the cross section

<u>4. Summary</u>

<u>LHC</u> is coming soon, followed by <u>ILC</u> We are expecting the discovery of <u>Higgs boson</u> & <u>New Physics</u>

Precision measurements of masses, couplings etc @ LHC & ILC
→ ``indirectly" provide information of UV theory

Discovery of some exotic particle

 \rightarrow ``directly'' suggests a class of new physics models