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SM Predictions (Confirmed)

Weak Neutral Currents

Parity Violation in Atoms

W±, Z gauge bosons, Gluon Jets

Asymptotic Freedom

c, t, b quarks; CP violation; B physics

Numerous other tests (Stable proton τp ≥ few × 1033yrs)
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Where is the SM Higgs Boson?

From arguments based on vacuum stability and
perturbativity, and with no new physics between MZ

and MPlanck, one finds

0.8 . λ . 1.1

=⇒ 130 GeV . mh . 180 GeV

where λ is the quartic coupling.
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The Standard Model Higgs
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The Standard Model Higgs
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νν ll→ ZZ → H→pp 

γγ → qqH→qq 

νlν l→ WW → qqH→qq 

jjν l→ WW → qqH→qq 

νlν-l+ l→ qq ZZ →qq 

 SM Higgs Signals (statistical errors only)σ5 

LHC 14 TeV
 Signal with NLOσ

Djouadi et al. 2004.
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Physics beyond the SM required by:

Neutrino Oscillations(
∆m2

SM ∼
dim 5

10−10eV 2 � ∆m2
ATM ,∆m2

SOL

)

∑
mνi . 1 eV

δT
T (Inflation) ∼ 10−5

Non-baryonic DM (ΩCDM ≈ 0.25)

Baryon Asymmetry
(
nB/s ∼ 10−10

)
, with ΩB ≈ 0.05

Dark Energy
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CMB Angular Power Spectrum
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Additional Motivations

Gauge Hierarchy Problem; (MW �MP )

Fermion Masses & Mixings;

Unification with Gravity (?)

Family Replication

Charge Quantization

Origin of Parity Violation
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Low Energy Supersymmetry

Resolution of the gauge hierarchy problem;
Unification of the SM gauge couplings at
MGUT ∼ 2× 1016 GeV;
Cold dark matter candidate (LSP);
Predicts new particles accessible at the LHC;
Other good reasons:
Radiative electroweak breaking;
String theory requires susy .
Leading candidate is the MSSM (Minimal
Supersymmetric Standard Model).
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The MSSM Higgs Boson

Minimal Supersymmetric Standard Model: Two Higgs
Doublet

h, H , A and H±

m2
h 'M2

Z cos2 2β
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The MSSM Higgs Boson

where

t = log
M2

susy

m2
t

, Ãt = At − µ cotβ

Xt =
2Ã2

t

M2
susy

(
1− Ã2

t

12M2
susy

)
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The MSSM Higgs Boson
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CMSSM
Chamseddine et al. 1982, Barbieri et al. 1982, . . .

m0, m1/2, A0, tan β, signµ

m0 = Universal soft SUSY breaking scalar mass

m1/2 = Universal SSB gaugino mass

A0 = Universal SSB trilinear interaction

tanβ = vu

vd

µ = Supersymmetric bilinear Higgs parameter
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Scanning Procedure

Particle Physics Constraints
LEP2 Direct Searches: mfW1

> 103.5 GeV, meτ1 > 98.8 GeV,
meτ1 −m eZ1

> 10 GeV

Muon Anomalous Magnetic Moment: Miller et al. 2007
3.34× 10−10 ≤ ∆aµ ≤ 55.6× 10−10(3σ)

b −→ sγ decay:

2.85× 10−4 ≤ Br(b −→ sγ) ≤ 4.24× 10−4(2σ)

Bs −→ µ+µ− decay:

BF (Bs −→ µ+µ−) < 1.0× 10−7(95%CL)

Dec 19, 2007, GUT 07 Workshop Inflation and Unification – p.15/92



Scanning Procedure

Particle Physics Constraints Contd.
Cold Dark Matter Constraint: ΩCDMh

2 = 0.11+0.011
−0.015(2σ)

Spergel et al. WMAP Collaboration, 2006

Input Parameters

0 ≤ m0 ≤ 5 TeV, 0 ≤ m1/2 ≤ 2TeV

A0 = 0.5, 0, −1 TeV, −2 TeV,

tanβ = 5, 10, 50 and 53

with µ > 0 and mt = 171.4 GeV, (updated limit: mt = 170.9±
1.8 (1σ) GeV).
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Results: Effect of DM Constraint
tanβ=10, A0 =-2TeV, µ >0
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Results: Allowed region for mA
Q.S et al arXiv:0712.1049
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Allowed region for stau mass
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Allowed region for top squark mass
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Allowed region for gluino mass
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Direct Detection Cross Section
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EXTRA DIMENSION(S)

WHO NEEDS THEM ?

Unification of forces (Kaluza-Klein) Consider
5 dimensional gravity
metric tensor→ gAB , A,B = 0, 1, ..., 4

Dimensional reduction to M4 × S1 :

gµν , gµ4 ∼ Aµ , g44

↑ ↑ ↑
graviton EM field(!) scalar
(µ, ν = 0, ..., 3)
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EXTRA DIMENSION(S)

Electric charge quantized

Monopoles

’Higgs’ mechanism

Tower of new states (esp. graviton)
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EXTRA DIMENSION(S)

M-Theory
Presumably 11 dimensional;
Low energy limit may be 11-d supergravity;
(graviton, gravitino, AMNP)

Contains all known
superstring theories;

}
Unification of matter

& gauge forces?

Large extra dimension(s)
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WARPED EXTRA DIMENSION

Resolution of the gauge hierarchy
problem (without invoking susy);
ν Oscillations may be accommodated
using dim 5 SM operators;
ν could be Dirac or Majorana
may be consistent with GUTS;
may generate even ’smaller’ scales:
MP →TeV2/MP

(
∼ 10−3eV

)

KK excitations at LHC?
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WARPED EXTRA DIMENSION
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TWO SCENARIOS

Gravity propagates in bulk;
SM (especially Higgs) fields reside on TeV brane.

"All" fields allowed to propagate in bulk
(except Higgs?) ⇒many interesting consequences.
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Fermion Wave Function
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Neutrino Oscillations in RS

Majorana Case Consider the dimension five operator
∫
d4x

∫
dy
√−g lij

M2
5

H2 ΨiC Ψj

≡
∫
d4xM

(ν)
ij Ψ

(0)
i C Ψ

(0)
j ,

M
(ν)
ij =

∫ +πR

−πR

dy

2πR

lij

M2
5

e−4σ(y)H2(y) f
(ν)
0i (y) f

(ν)
0j (y)

Dec 19, 2007, GUT 07 Workshop Inflation and Unification – p.33/92





SUMMARY (Warped SM)

Bulk SM fields;

Higgs on the TeV Brane;

Neutrinos could be Dirac or Majorana

Dirac Neutrinos: Introduce SM singlet fermion,
(eliminate dim 5 Majorana masses by imposing some
symmetry, say lepton number), =⇒ p stable; But n− n
possible; Also µ→ eγ, etc.

Smoking Gun: KK excitations at the LHC.
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5D Gauge – Higgs Unification
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In 5D we have non-SUSY SU(3)C × SU(3)w × U(1) gauge symmetry.

Fifth dimension compactified on the orbifold S1/Z2.

SM Higgs Boson arises from the ’internal’ components of the 5D gauge field.

From 5D theory with Gauge Higgs unification condition:

114.5 GeV ≤ mh ≤ 125 GeV

I. Gogoladze, N. Okada, Q.S.
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Gauge and top Yukawa Unification
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Gauge and top Yukawa Unification

Mt = 169.1 Mt = 170.9 Mt = 172.8

Λ 3.26× 107 8.41× 107 2.34× 108

mh 112.9 117.0 121.1
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Orbifold GUTs, U(1)Y and Higgs Mass

V. Barger, J. Jiang, P. Langacker and T. Li, Nucl. Phys. B 726 (2005) 149, have shown that in
orbifold GUT it is possible to have non-canonical normalization for U(1)Y hypercharge,
which provides gauge coupling unification within the SM framework.
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SU(7) orbifold model I.Gogoladze, T.Li, Q.S.

N = 1 SUSY in 7D corresponds to N = 4 SUSY in 4D.
The bulk gauge supermultiplet is decomposed under
4D N = 1 SUSY into a gauge vector multiplet V and
three chiral multiplets Σ1, Σ2 and Σ3 in the adjoint
representation.
The bulk action in the Wess-Zumino gauge and in 4D
N=1 SUSY notation contains:

S =

∫
d7x Tr

(∫
d2θ

(
1

kg2
Σ1[Σ2,Σ3]

))
+ h.c.
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7D N = 1 SUSY SU(7) gauge theory is compactified on the
orbifold T 2/Z6 × S1/Z2.

RΓT
= diag (+1,+1,+1, ωn1 , ωn1 , ωn1 , ωn2)

RΓS
= diag (+1,+1,+1,+1,+1,−1,−1)

where n1 and n2 are positive integers, and n1 6= n2.

{SU(7)/RΓT
} = SU(3)C × SU(3)× U(1)× U(1)′

{SU(7)/RΓS
} = SU(5)× SU(2)× U(1)
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SU(7)⇒ SU(3)C × SU(2)L ×U(1)Y ×U(1)α ×U(1)β




(8,1)Q00 (3, 2̄)Q12 (3,1)Q13 (3,1)Q14

(3̄,2)Q21 (1,3)Q00 (1,2)Q23 (1,2)Q24

{(3̄,1)Q31 (1, 2̄)Q32 (1,1)Q00 (1,1)Q34

(3̄,1)Q41 (1, 2̄)Q42 (1,1)Q43 (1,1)Q00
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Gauge and Top Yukawa Unification

RΓT
= diag

(
+1,+1,+1, ω5, ω5, ω5, ω2

)

RΓS
= diag (+1,+1,+1,+1,+1,−1,−1)

TU(1)Y ≡ 1

6
diag (1,1,1,0,0,−3,0)

+

√
14

42
diag (1,1,1,1,1,1,−6) ,
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Gauge and Top Yukawa Unification

TU(1)α
≡ −

√
14

2
diag (1,1,1,0,0,−3,0)

+ diag (1,1,1,1,1,1,−6)

TU(1)β
≡ diag (1,1,1,−2,−2,1,0)

tr[T 2
U(1)Y

] = 2/3. From kY g
2
Y = g2

2 = g2
3 condition we are

getting kY = 4/3.
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Zero modes from the chiral multiplets

Σ1 → Q3 :

(
3,2,

1

6
,3,−

√
14

2

)

Σ2 → Hu :

(
1,2,

1

2
,−3,−3

√
14

2

)

+Hd :

(
1,2,−1

2
,3,

3
√

14

2

)

Σ3 → tc :

(
3̄,1,−2

3
,0,2
√

14

)
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Zero modes from the chiral multiplets

from the trilinear term in the 7D bulk action
∫

d7x

[∫
d2θ g7Q3t

cHu + h.c.

]
,

g1 = g2 = g3 = yt = g7/
√

V,
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1. The brane localized gauge and Yukawa interaction can
be negligible.

2. The zero modes are not localized at different points on
the orbifold.

3. The four dimensional fields are not heavily mixed with
other brane localized fields.
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Higgs Sector

H ≡ − cosβiσ2 H∗
d + sin βHu

ht = yt sin β

The quartic Higgs coupling is determined at MGUT by the
supersymmetric D-term

λ =
3
4
g2
1(MGUT) + g2

2(MGUT)

4
cos2 2β

mh =
√
λv
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Results

Compactification scale, SUSY and additional gauge
symmetry breaking scale
SU(3)C × SU(2)L × U(1)Y × U(1)α × U(1)β ⇒ SM are all of
order MGUT .
Below MGUT scale we have the SM particle content with:

g1 = g2 = g3 = yt, ht = yt sin β

Input parameters:

αEM = 127.92± 0.02, mt = 170.9GeV

sin2 θw = 0.2311± 0.0001,

Prediction: α3(MZ) = 0.118, mh = 131GeV
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Gauge and Top Yukawa Unification
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Gauge and Top Yukawa Unification
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Gauge & Bottom Yukawa Unification
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Gauge & Bottom Yukawa Unification
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Standard Model (SM) + Einstein’ GR

⇒Hot Big Bang Cosmology
Predictions

Existence of CMB;

Redshift (Galaxies );

Primordial Nucleosynthesis.
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Standard Model (SM) + Einstein’ GR

Hot Big Bang Cosmology fails to explain
1) Observed Isotropy of CMB(COBE)

2) Origin of δT
T -COBE,..., WMAP

3) Ωtotal = 1 (critical density)
4) ΩCDM = 0.22 (non-baryonic DM)
5) nb/nγ = 10−10 (baryon asymmetry)

If GR stays intact, an extension of the SM is needed.

(Dark Energy?)
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Standard Model (SM) + Einstein’ GR

6) Indeed Neutrino Oscillations also require an extension of
the SM:
Atmospheric ν Oscillations:

⇒ |∆mATM | ≈ 0.05 eV,
Solar ν Oscillations:

⇒ |∆mSOLAR| ≈ 0.01 eV;
But |∆mν | ≈ 0.00001 eV;

(Dim 5 Ops. (LH) 2)
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Inflationary Cosmology

Inflationary Cosmology can take care of (1), (2), (3) and
an inflation model can be called ”realistic” if it can
explain (4)→ CDM and (5)→ nb/nγ . Some Models also
provide a link with (6)→ neutrino physics.
Testable predictions?
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Inflationary Cosmology

One key parameter in cosmology is the scalar spectral
index ns. According to Harrison and Zeldovich (HZ),
ns = 1 is the most ’natural’ value, referred to as the
scale invariant value.
The most recent analysis from WMAP yields
ns ≈ 0.95± 0.03

(WMAP 1 : ns ≈ 0.99± 0.04 )
A far more precise determination of ns is crucial for
distinguishing inflation models.

Dec 19, 2007, GUT 07 Workshop Inflation and Unification – p.59/92



Inflationary Cosmology
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Inflationary Cosmology

Inflation model come in variety of flavors. These
include:

Chaotic Inflation (Linde, ...., Murayama, ..., Yanagida)

New Inflation (Linde, Albrecht, Steinhardt,..., Senoguz,....)

Hybrid Inflation (non-susy , susy)
Supergravity Inflation
Brane Inflation (Dvali, Tye, ....)

Compactification (Arkani Hamed et.al, ...., Schmidt et.al,....)

Quintessence/Inflation
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Inflation

In this talk I will assume that inflation is associated with
some symmetry breaking (phase transition) in the early
universe. This is motivated as follows:

SM gives rise to phase transitions:
Electroweak (Tc ∼ 100 GeV) SU(2)× U(1)→ U(1)em
QCD (Tc ∼ 100 MeV)→ Confinement
SM gauge symmetry is a part of some larger symmetry.
Examples:
SU(5), L←R models, Extra dimensions;
Global Symmetries (U(1)axions, ...)
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Inflation
Senoguz, Q.S

To keep the discussion as simple as possible, consider
U(1)B−L, an accidental global symmetry of the SM.
(Similar discussion holds if U(1)B−L → U(1)axion)

We require that U(1)B−L is spontaneously broken and
introduce the coupling yijNiNjφ; Here < φ > breaks
U(1)B−L and also provides masses for the right-handed
neutrino Ni.

φ is going to be the inflaton and, since it couples to Ni ,
the observed baryon asymmetry arises via leptogenesis.
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Quartic (CW) Potential (non-susy)
Q.S, Vilenkin; Pi; Linde

V (φ) = Aφ4
(
ln
(

φ
M

)
− 1

4

)
+ AM4

4

↑
φ = gauge singlet

V (φ = M) = 0; V (φ = 0) = AM4

4 ≡ V0

V (φ << M) = AM4

4 − bφ4
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Quartic (CW) Potential (non-susy)
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Quartic (CW) Potential (non-susy)

For V 1/4
0 < 1016 GeV,

φ < mP (' 2.4× 1018 GeV)
V ' V0

(
1− (φ/M)4

)

ns ' 1− 3
N0
, α ' (ns − 1) /N0

↑
e-folds for k0 = 0.002Mpc−1

(
V

1/4
0 > 105 GeV to avoid conflict with WMAP

)
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From New to Large Field Inflation

For V 1/4
0 & 1016 GeV, φ > mP during observable

inflation . Predictions approach that of φ2 potential,
with
ns = 1− 2

N0
' 0.96

r ' 0.13
α ' −0.6× 10−3
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From New to Large Field Inflation
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The spectral index ns vs log[V (φ0)1/4 (GeV)] for the Coleman-Weinberg potential (green
curve), compared with the WMAP range for ns (68% and 95% confidence levels, taken from
Spergel et al., astro-ph/0603449). Note that the tensor to scalar ratio r ≈ 0 for
V (φ0)1/4 � 1016 GeV and r ≈ 0.14 for V (φ0)1/4 ≈ 2 × 1016 GeV.
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From New to Large Field Inflation

The tensor to scalar ratio r vs the spectral index ns for the Coleman-Weinberg potential
(green curve). The WMAP contours (68% and 95% confidence levels) are taken from Spergel
et al., astro-ph/0603449.
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From New to Large Field Inflation

6 8 10 12 14 16 18
Log10@V01�4HGeVLD0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1−n

r

1− ns and r vs. log[V
1/4
0 (GeV)] for the Coleman-Weinberg

potential.

Dec 19, 2007, GUT 07 Workshop Inflation and Unification – p.70/92



From New to Large Field Inflation
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Magnetic Monopoles and Inflation

Consider the breaking

SO(10) −→ 4− 2− 2 −→ 3− 2− 1

First breaking produces superheavy monopoles
carrying one unit of Dirac charge

π2(SO(10)/4− 2− 2) = Z2;

The second breaking at scale Mc produces monopoles
which carry two units of Dirac magnetic charge. These
are intermediate mass monopoles and they may
survive inflation .
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Magnetic Monopoles and Inflation

Consider the quartic coupling −cφ2χ†χ, with
c ∼ (Mc/M)2. Here χ vev breaks 4− 2− 2 to 3− 2− 1

and φ is the inflaton.
Monopole formation occurs when cφ2 ∼ H2

−→ H(t− tχ) ≡ η ∼ 3c/λ.
Initial monopole number density ∼ H3, which gets
diluted by inflation down to H3exp(−3η) ; thus,
rM = nM/T 3

R ∼ (H/TR)3exp(−3η) . 10−30.
Roughly 25- 30 e-folds can yield a flux close to or below
the Parker bound.
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Non-minimal Models King, Bastero Gil, Q.S

K = |S|2 + |φ|2 +
∣∣φ
∣∣2 + |N |2←− right-handed sneutrino

+κS
|S|4

4m2

P
+ κSφ

|S|2|φ|2

m2

P
+ κSN

|S|2|N |2

m2

P
+ ....

‘regular’ hybrid inflation with φ and N at origin during
inflation , but Vinf l picks up a term (−κS)κ2M4 S2

m2

P
, such

that

ns ' 1− 2δ − 2κS

↗ ↖
radiative correction non-minimal contribution

Dec 19, 2007, GUT 07 Workshop Inflation and Unification – p.74/92



Dec 19, 2007, GUT 07 Workshop Inflation and Unification – p.75/92



10
−3

10
−2

10
−1

κ

0

0.01

0.02

0.03

δ
κS=0.02
κS=0.015
κS=0.01
κS=0.005
κS=0

Dec 19, 2007, GUT 07 Workshop Inflation and Unification – p.76/92



15.8 16 16.2 16.4 16.6 16.8
Log10@MHGeVLD

0.9

0.92

0.94

0.96

0.98

1

1.02

n
s

ΚS=0

ΚS=0.02

ΚS=0.015

ΚS=0.01

ΚS=0.005

15.8 16 16.2 16.4 16.6 16.8
Log10@MHGeVLD

0.9

0.92

0.94

0.96

0.98

1

1.02

n
s

The spectral index ns as a function of the gauge symmetry breaking scale M for smooth
hybrid inflation , compared with the WMAP range for ns (68% and 95% confidence levels,
taken from Spergel et al., astro-ph/0603449). The gray sections indicate that the field is
initially close to a local maximum.
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M is symmetry breaking scale (Inflation ’scale’∼ κ1/2M )
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New Inflation (Kawasaki et al,Senoguz,Q.S,..)

Here S and N stay at zero during inflation now driven by φ
( W = S

(
−µ2 + (φφ)m

M2m−2
∗

)
)

During Inflation,
V ' µ4

(
1− β

2
φ2

m2

P
+ ....

)

(
with β ≡ κSφ − 1 ≥ 0.

)

ns ' 1− 2β, for β � 1/ [(2m− 2)Nl]
' 1− [2 (2m− 1) / (2m− 2)Nl] , for β ≈ 0.
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Sneutrino Hybrid Inflation

(Antusch et al )
Here the right-handed sneutrino is the inflaton (cf : Chaotic
case).

ns ' 1− 2γ (γ ≡ κSN − 1)

r � γ2

dns/d ln κ . −γ
(
N2/m2

P

)

For γ ≈ 0.02, the model is consistent with WMAP 3.
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Z
′
and Cosmic Strings

Consider the breaking

E6 −→ SO(10)× U(1) −→ 3− 2− 1× U(1)

If the additional U(1) symmetry is broken in the TeV
range one predicts not only an additional neutral gauge
boson but also topologically stable strings, with mass
per unit length µ of order TeV2.
These strings are expected to be display
superconductivity because of fermions in the 10 + 10
representations of SO(10).

Dec 19, 2007, GUT 07 Workshop Inflation and Unification – p.85/92



Z
′
and Cosmic Strings

Can we see them at the LHC ?
How about their cosmic counterparts?
LIGO/ LISA require Gµ > 10−1210−14 . In other words,
µ & 1011 − 1012 GeV.
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Brane Inflation and Cosmic Strings
Tye et. al.

In some of the simplest models, inflation is driven by
an attractive potential between, say, a D-brane and
anti-D-brane, separated by some distance in the extra
dimensions. As the branes move closer together, the
three large space like dimensions expand exponentially.
Eventually they collide, annihilate, and reheat the
universe. The separation between the branes plays the
role of the inflaton field. (Note: Presumably some
branes survive if the SM lives on a stack of branes.)
In the simplest models the scalar spectral index ns is
close to 0.97, but values close to 0.95 are also possible.
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Brane Inflation and Cosmic Strings

Prior to brane annihilation the associated gauge
symmetry is U(1)× U(1). One linear combination gives
rise to D-strings, while the orthogonal combination is
associated with F (fundamental)-strings.
It has been argued that a substantial fraction of energy
of the annihilating branes is used up in the production
of a network of cosmic D and F strings.
If one assumes that brane inflation gives rise to the
observed inhomogeneities, estimates suggest that

10−11 . Gµ . 10−6.

With some(?) luck it may be possible to observe these
primordial strings with LIGO/LISA.
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Conclusion

There is some experimental support for ideas underlying
grand/partial unification:

Quantization of electric charge;
Unification of gauge couplings (SUSY SU(5))
Neutrino Oscillations ( 4− 2− 2/SO(10) models in
particular)

But many far reaching predictions are still unverified.
These include:

Proton Decay (mediated, in particular, by superheavy
gauge bosons)
Magnetic monopoles
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Conclusion

Exotic processes /states such as:
1. n− n oscillations;
2. Rare decays
3. Color singlet states carrying fractional electric

charge ( 4-2-2, 3-3-3, winding strings)
4. Topological defects such as cosmic strings
5. Axion

Clearly, very large scale detectors must be built to continue searching for proton decay

and magnetic monopoles. ICE CUBE can look for monopoles, especially if they are not

too heavy. They can find monopoles if the flux is not too far below the Parker bound

(∼ 10−16cm−2sec−1sr−1 for GUT mass monopoles).
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Conclusion

The importance of the LHC for the future of high energy
physics cannot be overemphasized. Important topics
include:

Nature of Electroweak Symmetry Breaking
Supersymmetry
Dark Matter (LSP)
Extra Dimensions ( Kaluza Klein excitations)
Spontaneous Parity Violation (New gauge bosons,
other TeV scale particles)
TeV Scale Quantum Gravity (Black holes,...)
Exotic States ( Magnetic Monopoles, Fractionally
charged color singlets, Z flux tubes, Leptoquarks,
diquarks, unparticle physics...).
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Conclusion

Precision Cosmology will play an important role in the
search for new physics beyond the SM.
Challenge for PLANCK and other
ongoing/future expts: Determine ns, nT , dns/d ln k, r,
wDE , ..... to a high degree of precision
Find DARK MATTER
( LSP, axion, majoran, KK,... )
⇒ help discover standard model of inflation .
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