Highlights from the **BABAR** experiment

Nicolas ARNAUD Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS & Université Paris Sud

ICFP 2012 Kolymbari, Greece – June 10-16

Outline

- Emphasis on two analysis
 - New B \rightarrow D^(*) τv result submitted to PRL: <u>arXiv:1205.5442</u> [hep-ex]
 - Direct measurement of time-reversal violation to be submitted soon
- Quick report not exhaustive ! of some recent results based on full dataset
 - B_s semileptonic branching fraction already published
 - $B \rightarrow v \overline{v}(\gamma) aka B \rightarrow$ 'invisible' submitted this Wednesday!

arXiv:1206.2543 [hep-ex]

- See parallel session talks for latest BaBar results on
 - Searches for low-mass Higgs and dark gauge bosons (G. Lafferty, last Monday)
 - Searches for new sources of CP violation (G. Simi, this evening at 18:20)
- All analysis reported in this talk use the full dataset available see next slide

BaBar in a nutshell

• The BaBar dataset

• The BaBar detector

- Data taking ended more than 4 years ago (April 7th 2008)
 → But analysis are still going on and will continue to do so for a few years
- 424 fb⁻¹ @ $\Upsilon(4S) \Leftrightarrow (471.0 \pm 2.8) \times 10^6 \text{ B}\overline{\text{B}} \text{ pairs}$ 'onpeak'
 - 44 fb⁻¹ recorded 40 MeV below the peak 'offpeak' to study background
- 30.6 fb⁻¹ @ $\Upsilon(3S)$ and 15.0 fb⁻¹ @ $\Upsilon(2S)$ onpeak + offpeak $\rightarrow \eta_b(1S)$ discovery + searches for low-mass Higgs and dark gauge bosons
- ~3.9 fb⁻¹ from the final energy scan up to 11.2 GeV

arXiv:1205.5442 Submitted to PRL

Motivation

Tree-level semileptonic decays mediated by a W⁺ → τ mode: sensitivity to additional contributions, e.g. from an intermediate charged Higgs Boson H⁺

• Decays sensitive to V_{cb} and hadronic form factors \rightarrow Most of these dependences cancelled in the ratio (τ mode) / (e, μ modes)

$$R(D^{(*)}) = \frac{BF(B \to D^{(*)}\tau\nu)}{BF(B \to D^{(*)}l\nu)}$$

← 'Signal' decays

- ← 'Normalization' decays
- Previous measurements from B-factories exceed Standard Model (SM) predictions
 → Low significance statistically limited
- New BaBar result based on the full data sample → Twice the statistics of the previous analysis
- Improved reconstruction
 - Better B selection see next slide
 - D^(*) and 1 reconstruction extended to lower momenta
 - \rightarrow Signal yield increased by more than a factor 3!
- Main experimental challenge: separate final states based on the number of v's

Z. Phys. C46, 93 (1990) PRD 78, 0156006 (2008) PRD 85, 094025 (2012) + updates for this analysis

5

Event selection

- Limited kinematical information due to neutrino(s) in the final states \rightarrow Exclusive hadronic reconstruction of one of the B mesons – the 'B_{tag}'
- B_{tag} candidates selected using two kinematical variables
 - The beam energy-substituted mass $m_{ES} = \sqrt{(E_{beam}^*)^2 (p_{tag}^*)^2}$ \rightarrow Peaks at the B mass for signal with a 2.5 MeV/c² resolution
 - The energy difference $\Delta E = E_{tag}^* E_{beam}$ \rightarrow Centered at 0 for signal with a 18 MeV resolution
- Signal B corresponds to the rest of the event (tracks + energy deposits)
 → Improved knowledge of kinematics and missing energy
- B_{tag} candidate combined with a $D^{(*)}$ meson candidate and a charged lepton 1
 - No additional charged particle
 - $B\overline{B}$ pair with the lowest extra energy selected
 - \rightarrow Full reconstruction of the event except neutrinos
- Only purely leptonic decays of the $\tau (\rightarrow l^- \overline{\nu}_l \nu_{\tau})$
 - \rightarrow Same particles in the final states for all decay modes
 - Signal (normalization) events have 3 (1) neutrinos in the final state

Fit

- 2D unbinned maximum likelihood fit all PDFs extracted from high stat. MC
 - Invariant mass of the undetected particles $m_{miss}^2 = (P_{ee} P_{Btag} P_{D(*)} P_{\ell})^2$
 - \rightarrow Peaks at 0 for normalization events; broad distribution up to ~9 GeV² for signal
 - Lepton momentum in B_{sig} rest frame p_{ℓ}^{*}
 - \rightarrow Signal spectrum softer for signal events (secondary particle from τ decay)
- 4 $D^{(*)}$ lv samples = $\Sigma(8 \text{ contributions})$
 - $D^{(*)}\tau\nu \text{ and } D^{(*)}(e,\mu)\nu$ $D^{**}(l,\tau)\nu$ [1]
 - Backgrounds: charge cross-feed, other BB, continuum [3]
- 4 $D^{(*)}\pi^0 l\nu$ control samples
 - \rightarrow Constrain background with charm resonances heavier than D^{\ast}
- Simultaneous fit on the 8 samples
 - Yields for the last 3 background categories are fixed to the expected value
- Main systematics uncertainties
 - $D^{**}lv$ background dominant \Rightarrow conservative estimation
 - Limited Monte-Carlo signal samples
 - Continuum and BB background

Fit results: $B \rightarrow D^* \tau v$

Fit results: $B \rightarrow D\tau v$

Comparison with the Standard Model prediction

- Combination of the two measurements
 - Correlation of -0.27
 - \rightarrow Feed down from D* in D sample

$$\rightarrow \chi^2 / \text{NDF} = 14.6/2,$$

p value = 6.9×10^{-4} [3.4 σ away]

Interpretation for type II two-Higgs-doublet model

• Simulated events reweighted at the matrix element level for 20 values of $\tan \beta / m_{H^+}$ \rightarrow PDFs and efficiencies updated; fits repeated then

• Each ratio matches the prediction at values of $\tan \beta / m_{H^+}$ which are not compatible \rightarrow Model excluded at 99.8% CL on the whole range for H⁺ mass > ~10 GeV

• Low-mass range already excluded by $B \rightarrow X_s \gamma$ data

Time-reversal violation

Preliminary result To be submitted soon

Time reversal violation: challenging!

- The CP and T symmetries are theoretically connected through the CPT theorem
 - CP violation (CPV) established in K, B and D systems
 - But no proof yet of T non-invariance (TRV), not assuming CPV nor CPT
- TRV in a decay process requires
 - Reversal of motion $(t \rightarrow -t)$
 - And exchange of |in> and |out> states
 - \rightarrow Experimentally challenging
- Searching TRV in decays
 - $\Gamma(\mathbf{K}^-\pi^+ \rightarrow \overline{\mathbf{B}}^0) \neq \Gamma(\mathbf{K}^+\pi^- \rightarrow \mathbf{B}^0)$???
- Searching TRV in mixing
 - CPLEAR: Prob($K^0 \rightarrow \overline{K}^0$) \neq Prob($\overline{K}^0 \rightarrow K^0$) \rightarrow CPV and TRV cannot be distinguished
 - Nothing similar in the B⁰ system ($\Delta\Gamma \sim 0$)
- Searching TRV in interferences
 - Neither motion reversal nor exchange of initial and final states!

Innovative analysis methodology

- Use Einstein-Podolsky-Rosen entanglement @ Υ(4S) to overcome the problem of irreversibility
- $\Upsilon(4S)$ decay: use two sets of orthogonal states
 - Flavor eigenstates B^0 and \overline{B}^0
 - CP eigenstates B_{CP+} and B_{CP-}

$$< in >= \frac{1}{\sqrt{2}} \Big[B^{0}(t_{1}) \overline{B}^{0}(t_{2}) - \overline{B}^{0}(t_{1}) B^{0}(t_{2}) \Big] = \frac{1}{\sqrt{2}} \Big[B_{CP+}(t_{1}) B_{CP-}(t_{2}) - B_{CP-}(t_{1}) B_{CP+}(t_{2}) \Big]$$

- Look for the following transitions
 - $\bullet B^0 \to B_{CP^+}$
 - $\bullet B^0 \to B_{CP-}$
 - $\overline{B}^0 \rightarrow B_{CP^+}$
 - $\overline{B}^0 \rightarrow B_{CP-}$
- Δτ = t_{2nd decay} t_{first decay}
 Time ordering matters!

- and for their T-conjugates
 - $B_{CP+} \rightarrow B^0$
 - $B_{CP-} \rightarrow B^0$
 - $B_{CP+} \rightarrow \overline{\overline{B}}{}^{0}_{\circ}$
 - ${}^{\bullet}\operatorname{B}_{\operatorname{CP}^{-}}\to \overline{\operatorname{B}}{}^0$

- Tag B⁰ flavor using e.g. the sign of a prompt charged lepton ($B^0 \rightarrow l^+X; \overline{B}^0 \rightarrow l^-X$)
- Tag CP eigenstates by the final states $J/\psi K_L$ (CP+) and $J/\psi K_S$ (CP-)

Method described in J. Bernabeu *et al.* <u>arXiv:1203.0171</u> [hep-ph]

Example of an event and of its T-conjugate

14

Connecting transitions through T, CP and CPT

- In total we can build
 - 4 independent **T** comparisons
 - 4 independent **CP** comparisons
 - 4 independent **CPT** comparisons

- T implies comparison of
 - Opposite Δτ sign
 - Different reco states $(J/\psi K_s \text{ vs } J/\psi K_L)$
 - Opposite tag states (B⁰ vs \overline{B}^0)

Fit

 Δm_d : B⁰ mass difference

8 decay

rates total

• Time dependent decay rates (τ>0):

 $g_{\alpha,\beta}^{\pm}(\tau) \propto e^{-\Gamma|\tau|} \left\{ 1 + S_{\alpha,\beta}^{\pm} \sin(\Delta m_d \tau) + C_{\alpha,\beta}^{\pm} \cos(\Delta m_d \tau) \right\}$

- $\alpha = B^0$ or $\overline{B}{}^0$
- $\beta = J/\psi K_S$ or $J/\psi K_L$
- \pm corresponds to the sign of $t_{CP tagged decay} t_{flavor tagged decay}$
- Different C and S for processes connected by T symmetry \Rightarrow TRV
- Signal model: $H_{\alpha,\beta}(\Delta t) \propto$ $g^+_{\alpha,\beta}(\Delta t_{\text{true}}) \times \operatorname{H}(\Delta t_{\text{true}}) \otimes \mathcal{R}(\delta t, \sigma_{\Delta t})$ $+g^-_{\alpha,\beta}(\Delta t_{\text{true}}) \times \operatorname{H}(-\Delta t_{\text{true}}) \otimes \mathcal{R}(\delta t, \sigma_{\Delta t})$
 - H: Heaviside step function; R: resolution function; $\delta t = \Delta t \Delta t_{true}$
- Inperfect tagging taken into account
 → Mix correct and uncorrect flavor assignments; dilution of asymetries
- Unbinned maximum likelihood fit to the $c\bar{c}K_S$ and $c\bar{c}K_L$ events, split by flavor
- Background accounted for by adding terms to the likelihoods

Alternative parameterization: $\{S,C\} \rightarrow \{\Delta S, \Delta C\}$

- 8 {S,C} sets \Rightarrow T, CP and CPT violating parameters { $\Delta S_{T,CP,CPT}$, $\Delta C_{T,CP,CPT}$ }
- Definition of the $\Delta S_{\{T,CP,CPT\}}$ parameters
 - Decays with a B^0 and $J/\psi K_s$ taken as references

• Any non-zero $\Delta S/\Delta C$ parameter corresponds to a symmetry violation

Fit results

Parameter	Final result	Expected values given $sin(2\beta) \approx 0.7$
ΔS_{T}^+	$-1.37 \pm 0.14 \pm 0.06$	-1.4
$\Delta S_{\mathrm{T}}^{-}$	$1.17 \pm 0.18 \pm 0.11$	1.4
ΔC_{T}^+	$0.10 \pm 0.16 \pm 0.08$	0.0
$\Delta C_{\mathrm{T}}^{-}$	$0.04 \pm 0.16 \pm 0.08$	0.0
$\Delta S_{\rm CP}^+$	$-1.30 \pm 0.10 \pm 0.07$	-1.4
$\Delta S_{\rm CP}^-$	$1.33 \pm 0.12 \pm 0.06$	1.4
$\Delta C_{\rm CP}^+$	$0.07 \pm 0.09 \pm 0.03$	0.0
$\Delta C_{\rm CP}^-$	$0.08 \pm 0.10 \pm 0.04$	0.0
$\Delta S^+_{\rm CPT}$	$0.16 \pm 0.20 \pm 0.09$	0.0
$\Delta S_{\rm CPT}^{-}$	$-0.03 \pm 0.13 \pm 0.06$	0.0
$\Delta C_{ m CPT}^+$	$0.15 \pm 0.17 \pm 0.07$	0.0
$\Delta C_{\rm CPT}^{-}$	$0.03 \pm 0.14 \pm 0.08$	0.0
$S^{+}_{{ m B}^{0},{ m K}^{0}_{ m S}}$	$0.545 \pm 0.084 \pm 0.06$	0.7
$S^{-}_{\mathrm{B}^{0},\mathrm{K}^{0}_{\mathrm{S}}}$	$-0.660 \pm 0.059 \pm 0.04$	-0.7
$C^+_{\mathrm{B}^0,\mathrm{K}^0_\mathrm{S}}$	$0.011 \pm 0.064 \pm 0.05$	0.0
$C_{\rm B^0, K_{\rm S}^0}^{-1}$	$-0.049 \pm 0.056 \pm 0.03$	0.0

Interpretation of the results

- Nominal fit on the 8 independent samples provides S's and C's + a likelihood value \rightarrow How significant is the observed T violation?
- Repeat the fit including T-invariance constraints {
 - Variation of $-2\Delta \ln L$ gives the T violation significance: $\Delta \chi^2 = -2(\ln L_{NoTRV} - \ln L)$ for 8 degrees of freedom

$$\begin{cases} \Delta S_T^{\pm} = \Delta C_T^{\pm} = 0\\ \Delta S_{CP}^{\pm} = \Delta S_{CPT}^{\pm} \end{cases}$$

$$\Delta C_{CP}^{\pm} = \Delta C_{CPT}^{\pm}$$

- Compute T-violation significance
 - CP and CPT significances estimated the same way

	Significance (syst. included)
Time reversal violation	14σ
CP violation	16.6σ
CPT violation	0.33σ

- Results
 - TRV observed at the 14σ level
 - \rightarrow First direct observation (no experimental connection with CP or CPT)
 - Consistent with CP violation measurement assuming CPT invariance

T Asymmetries

• Asymmetries for the 4 transitions studied (assuming perfect reconstruction):

B_s semileptonic branching fraction

Phys. Rev. D 85, 011101(R) (2012)

Motivation & method

- Use inclusive ϕ rate and ϕ rate in correlation with high momentum lepton to measure
 - B_s production rate vs. energy in scan region: f_s
 - \rightarrow Only known at the $\Upsilon(5S)$ peak (CLEO, 2007) or in the onpeak region (Belle, 2007)
 - B_s semileptonic branching ratio: $Br(B_s \rightarrow Xl\nu)$
 - \rightarrow Preliminary result from Belle (2010)

- ϕ (+ lepton) yields from B_s large compared to $B_{u/d}$ decays (dominant production)
 - CKM-favored $B_s \rightarrow D_s$ transition
- Use BaBar data from the final energy scan
- Compute 3 quantities at each energy:
 - B hadron event rate $= f_1(R_b, f_s, ...)$
 - Inclusive ϕ rate = $f_2(R_b, f_s, ...)$
 - Inclusive ϕ +lepton rate = $f_3(R_b, f_s, Br, ...)$
 - \rightarrow Other quantities known or computed
 - \rightarrow Extract f_s from the first two equations
 - \rightarrow Estimate Br from a likelihood scan

Analysis key points

- Continuum contribution subtracted using data below the $B\overline{B}$ threshold
- $B_{u/d}$ contributions measured in $\Upsilon(4S)$ data
- f_s extracted at each energy point
- χ^2 fit performed to the measured yields to extract the semileptonic branching ratio
- Dominant systematics: inclusive D_s yield per B_s

Results and interpretation

$B \rightarrow v \bar{v}(\gamma)$
'invisible'

arXiv:1206.2543 [hep-ex] Submitted to PRD-RC

Motivation & analysis key points

- Look for B decays producing neutrinos and potentially some exotic particles
- SM: $B^0 \rightarrow v \overline{v}$ suppressed by $(m_v/m_B)^2$ BF $(B^0 \rightarrow v \overline{v} \gamma) \sim 10^{-9}$

<< experimental reach

 $B^0 \rightarrow D^{*-1}v$

- In some SUSY models, BRs can be as high as 10^{-7} – 10^{-6}
 - Neutrino + neutralino production in the final state
 - \rightarrow Any signal would be a clear sign of new physics
- Semileptonic reconstruction of the B_{tag}
- Require no additional charged tracks on the B_{sig} side
- Select events with limited energy in the calorimeter on the signal side
 → Low 'extra energy': E_{extra}

 $D^{*-} \rightarrow D^0 \pi^- D^- \pi^0$

 $B^0 \rightarrow D^- lv$

 $D^- \rightarrow K^+ \pi^- \pi^ D^- \rightarrow K_S \pi^-$

Results

• No signal found	1	$B^0 \rightarrow invisible$	$B^0 \rightarrow invisible +$	γ
 Upper limits 	Fitted yield	$-22\pm9\pm16$	$-3.1 \pm 5.2 \pm 7.0$	0
	Signal efficiency	0.018%	0.016%	
	Br upper limit (90% C.L.) 2.4×10^{-5}		$1.7 imes 10^{-5}$	
	Previous BaBar upper limit (based on ~20% of the full dataset)	22 × 10 ⁻⁵	$4.7 imes 10^{-5}$	
• Fit results	$\begin{array}{c} 40 \\ \hline 0 \\ 35 \\ \hline 0 \\ 30 \\ \hline 0 \\ 10 \\ 1$	20 Total Background Total Data 10 5 10 5 10 10 10 10 10 10 10 10		
	E _{extra} (GeV)	0.2 0.4 0	E _{extra} (GeV)	28

Summary

- Significant excess of events in $B \rightarrow D^{(*)}\tau\nu$ decays
 - $\rightarrow 3.4\sigma$ above the Standard Model
 - Cannot be explained by a 2DHM Higgs of Type II
 - \rightarrow Completely ruled out
 - Waiting for a confirmation by Belle larger dataset + improved tagger
- First direct observation (14σ) of Time-reversal violation
- First measurement of the B_s semileptonic branching fraction
 - $B(B_s \to Xl\nu) = (9.9^{+2.6}_{-2.1}(\text{stat})^{+1.3}_{-2.0}(\text{syst}))\%$
 - plus the B_s production fraction
- Significantly improved limits on B \rightarrow invisible (+ γ) Br(B \rightarrow invisible) < 2.4 × 10⁻⁵ Br(B \rightarrow invisible + γ) < 1.7 × 10⁻⁵ @ 90% C.L.
- Only a fraction of recent BaBar results
 - Analysis ongoing for a variety of processes
 - \rightarrow To be continued...

Dedicated to the memory of **Popat Patel** (McGill)

who passed away last Saturday BACKUP

BaBar is still an active collaboration

- Data taking ended more than four years ago
 - April 7th 2008 @ 12:43 SLAC time
- But the analysis of the BaBar data is still going on
 - Updates of analysis with the full dataset and improved methods; new ideas
 - \rightarrow Analysis switching to the Long Term Data Analysis system

- Completion of the 'Physics of the B-Factories' book BaBar + Belle
- Publication of the final BaBar detector paper later this year
 - Covering the high luminosity period 2002-2008

Analysis method: B decay reconstruction

- Limited kinematical information due to neutrino(s) in the final states

 → Reconstruction of one of the B mesons in 1680 exclusive hadronic modes:
 B_{tag} → SX[±], S being a seed meson(D_(s)^(*) or J/ψ) and X[±] a charged state decaying to up to 5 hadrons (π, K, π⁰ and K_s)
- Btag candidates selected using two kinematical variables
 - The beam energy-substituted mass $m_{ES} = \sqrt{(E_{beam}^*)^2 (p_{tag}^*)^2}$
 - \rightarrow Peaks at the B mass for signal with a 2.5 MeV/c² resolution
 - The energy difference $\Delta E = E_{tag}^* E_{beam}$
 - \rightarrow Centered at 0 for signal with a 18 MeV resolution
- Signal B corresponds to the rest of the event (tracks + energy deposits)
 → Improved knowledge of kinematics and missing energy
- Hadronic tag method helps fighting combinatorial background
 → Light quark pairs: uū, dd, ss, cc the 'continuum'
- B_{tag} candidate combined with a $D^{(*)}$ meson candidate and a charged lepton 1
 - No additional charged particle
 - $B\overline{B}$ pair with the lowest extra energy selected

Backup for the $D^{(*)}\tau\nu$ analysis

- Background fighting
 - Cut on the leptonic mass squared: $q^2 > 4 \text{ GeV}^2$
 - Missing momentum in c.m. frame > 200 MeV/c
 - Use of boosted decision trees for each of the 4 D^(*)lv samples
- Semileptonic decay involving a τ lepton:

$$\frac{d\Gamma_{\tau}}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left[\left(|H_{++}|^2 + |H_{--}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} |H_{-t}|^2 \right]$$

- Only H_{00} and H_t contribute to $D\tau v$
- A charged Higgs (2HDM type II) of spin 0 coupling to the τ will only affect H_t

$$H_t^{\text{2HDM}} = H_t^{\text{SM}} \times \left(1 - \frac{\tan^2 \beta}{m_{H^{\pm}}^2} \frac{q^2}{1 \mp m_c/m_b} \right) \quad \begin{array}{l} -\text{ for } \mathsf{D}\tau \mathsf{v} \\ +\text{ for } \mathsf{D}^* \tau \mathsf{v} \end{array}$$

•This could enhance or decrease the ratios $R(D^*)$ depending on $tan\beta/m_H$

TRV: dataset and event selection

• Use full BaBar dataset

35

TRV analysis systematics

Systematic source	ΔS _T ⁺	ΔS _T -
misID flavour	0.019	0.019
Δt resolution function	0.02	0.05
Outlier's scale factor	0.012	-0.013
m _{ES} parameters	0.012	0.0018
ΔE parameters	0.017	0.017
K _L systematics	0.03	0.03
Differences between B_{CP} and B_{flav}	0.02	0.02
Background effects	0.03	0.04
Uncertainty on fit bias from MC	0.010	0.08
Detector and vertexing effects.	0.011	0.04
$\Delta\Gamma \neq 0$ effects	0.004	0.003
External physics parameters	0.005	0.006
Normalization effects	0.012	0.009
Total Systematics	0.06	0.11

T violation: contours and raw asymmetries

• Contours in the (ΔC , ΔS) plane

ΔS_T^+	=	$-1.37 \pm 0.14 \pm 0.06$
ΔS_T^-	=	$1.17 \pm 0.18 \pm 0.11$
ΔC_T^+	=	$0.10 \pm 0.16 \pm 0.08$
ΔC_T^-	=	$0.04 \pm 0.16 \pm 0.08$

• Asymmetries for the 4 transitions studied: $\overline{B}^0 \to B_{CP+}, \overline{B}^0 \to B_{CP-}, B_{CP+} \to B^0, B^0 \to B_{CP-}$

• For instance:
$$A_T(\Delta t) = \frac{\mathcal{H}^-_{\ell^- X, J/\psi \, K^0_L}(\Delta t) - \mathcal{H}^+_{\ell^+ X, c\overline{c}K^0_S}(\Delta t)}{\mathcal{H}^-_{\ell^- X, J/\psi \, K^0_L}(\Delta t) + \mathcal{H}^+_{\ell^+ X, c\overline{c}K^0_S}(\Delta t)} \quad \text{for } \Delta t > 0$$

with
$$\mathcal{H}_{\alpha,\beta}^{\pm}(|\Delta t|) \equiv \mathcal{H}_{\alpha,\beta}^{\pm}(\pm \Delta t) = \mathcal{H}_{\alpha,\beta}(\pm \Delta t)H(\Delta t)$$

• Assuming perfect reconstruction $A_T(\Delta t) = \frac{\Delta C_T^+}{2} \cos(\Delta m \Delta t) + \frac{\Delta S_T^+}{2} \sin(\Delta m \Delta t)$

CP and CPT likelihood scans

Bs fraction and semileptonic branching fraction

- B hadron events:
- Inclusive ϕ rate:
- Inclusive ϕ +lepton rate:

$B \rightarrow$ invisible analysis

- Neural Network to separate signal from background
- Extended maximum likelihood fit in E_{extra}
 - 2 species: signal & background
 - Minimum neutral energy threshold is 30 MeV
 - $\rightarrow E_{extra}$ distribution not continuous: taken into account in the fit
- Analysis crosscheck with 'modes' $B^+ \rightarrow$ invisible (+ γ) violating charge conservation
 - Signal consistent with 0
- $B^0 \rightarrow$ invisible + γ UL assumes that the γ momentum distribution follows the one given by the constituent quark model for $B^0 \rightarrow v \overline{v} \gamma$
- $B^0 \rightarrow$ invisible limit not decay-model dependent