

Highlights from the T2K Experiment

Tetsuro Sekiguchi KEK, IPNS for T2K collaboration

— Contents —

- Introduction of T2K
- Experimental Setup
- Status of Experiment
- Analysis Results
- Future Prospects
- Summary

Introduction of T2K

Neutrino Oscillation

- Flavor oscillation described by Pentecorvo-Maki-Nakagawa-Sakata matrix.
- Parameterized by 3 mixing angles and CP-violating phase δ_{CP}

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \cdot \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \cdot \begin{pmatrix} \cos\theta_{12} & \cos\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

"Atmospheric sector" θ_{23} v_{μ} disappearance (SuperK, K2K, MINOS) v_{τ} appearance (OPERA, SuperK)

 $\begin{array}{l} 0.92 < \sin^2\!2\theta_{23} < 1.0 \\ 2.3 \times 10^{\text{-3}} < |\Delta m^2_{\ 23}| \ (eV^2) < 2.56 \times 10^{\text{-3}} \end{array}$

"Solar sector" θ_{12} v_e disappearance (SNO, KamLAND, SuperK and others)

 $\begin{array}{l} 0.84 < \sin^2\!2\theta_{12} < 0.89 \\ 7.38 \times 10^{\text{-5}} < |\Delta m^2_{12}| \ (eV^2) < 7.80 \times 10^{\text{-5}} \end{array}$

Neutrino Oscillation

- Flavor oscillation described by Pentecorvo-Maki-Nakagawa-Sakata matrix.
- Parameterized by 3 mixing angles and CP-violating phase δ_{CP}

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \cdot \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \cdot \begin{pmatrix} \cos \theta_{12} & \cos \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$\theta_{13}$$

only upper limit known
sin²2\theta_{13} < 0.13 @90\% CL (2010) (CHOOZ, MINOS)
$$k$$

Accelerator experiment
 $L=-1km$
 $v_{e} \rightarrow v_{e}$ oscillation
 $(\bar{v}_{e} \text{ disappearance})$

$$If \theta_{13} is non-zero, open the possibility to measure - Mass Hierarchy - \delta_{CP}$$

The T2K Experiment

- <u>Tokai to Kamioka Long Baseline Neutrino Oscillation Experiment</u>
 - Accelerator-based neutrino experiment.
- Physics Motivation
 - Discovery of $v_{\mu} \rightarrow v_{e}$ conversion phenomena and the measurement of parameter θ_{13} which controls this phenomena.
 - Precise measurement of the parameters θ_{23} and Δm_{23} in $\nu_{\mu} \rightarrow \nu_{\mu}$ oscillation.

First T2K Results

Data collected until Mar. 2011: **1.43** ×10²⁰ POT

<u> V_e appearance result</u> (15/June/2011) $\rightarrow \underline{PRL 107, 041801}$ (2011)

- **6** v_e events observed !! \leftrightarrow Background(BG): 1.5±0.3events
 - Probability to observe 6 or more BG events = 0.7% (2.5 σ)
- θ_{13} measurement (90% CL)
 - 0.03 $<\sin^2 2\theta_{13} < 0.28$ (cent. val.=0.11) for $\Delta m_{23}^2 > 0$, $\delta_{CP} = 0$
 - 0.04 $<\sin^2 2\theta_{13}<$ 0.34 (cent. val.=0.14) for $\Delta m_{23}^2<$ 0, $\delta_{CP}=$ 0

 \rightarrow First indication of non-zero θ_{13} .

<u> ν_{μ} disappearance result</u> $\rightarrow PR D85, 031103(R) (2012)$

- **31** v_{μ} events observed $\leftrightarrow 103.6^{+13.8}_{-13.4}$ (syst.) expected w/o oscillation.
- $\sin^2 2\theta_{23} = 0.99$, $|\Delta m^2_{23}| = 2.63 \times 10^{-3} \text{ eV}^2$ (best fit values) \rightarrow Consistent with MINOS and SK results.

This talk = Updated v_{e} appearance result

Super-K Zenith

Super-K L/E

90% CL

0.85

sin²20

0.9

0.95

0.8

 Δm_{32}^2 (eV²/c⁴

 δ_{CP}

Experimental Setup

T2K Neutrino Beam

High intensity neutrino beam

- 30 GeV ~10¹⁴ protons extracted every 2.5sec.
- Protons hit the target: graphite rod (ϕ 2.6cm × 90cm)
- Secondary π^+ (and K⁺) focused by three magnetic horns (250kA/200kA)
- Decay Volume (96m long, He~1atm.)
 - ν_{μ} from mainly $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
 - v_e in the beam come from K and μ decay
- Beam Dump: stop all the hadrons and muons with $p_{\mu} < 5 GeV/c$.
- Muon Monitors: measure the intensity and profile of the muons (p_{μ} >5GeV/c) bunch by bunch

June 15th, 2012

T2K Neutrino Beam

June 15th, 2012

International Conference on New Frontiers in Physics

Neutrino Energy @ SK 9

June 15th

Near Detector ND280 (Off-Axis)

- ND280 @ 2.5 degree off-axis
- ND280 consists of:
 - Dipole magnet with 0.2T field
 - Fine Grain Detectors FGD's (×2):
 2.2 tons scintillator bars active v target
 - Time Projection Chambers TPC's (× 3):
 <10% dE/dx resolution
 <10% δp/p @ 1 GeV/c
 - P0D: π^0 Detector
 - ECAL (Electromagnetic CALorimeters)
 - SMRD (Side Muon Range Detector)

Example of ND280 vevent

Super Kamiokande as T2K Far Detector

Super Kamiokande (SK)

- Water Cherenkov detector
 - Total Mass: 50 kton
 - Fiducial Volume: 22.5 kton
 - Inner Detector(ID): ~11k PMTs facing inward
 - Outer Detector(OD): ~2k PMTs facing outward (OD)
 - veto for cosmic and background

Particle ID using ring shape & opening angle →Excellent identification of µ/e: ~99% efficiency.

June 15th, 2012

Status of Experiment

June

Data Collected and Analyzed

- Beam Power increased up to 190kW w/ 1 × 10¹⁴ protons per pulse (world record)
- Analyzed data: up to May 15th, 2012: 2.56 × 10²⁰ POT (Protons On Target)
 - RUN1 (2010): 0.32×10^{20} POT
 - RUN2 (2010-2011): 1.11 × 10²⁰ POT
 - ND280 RUN 1+2 data used for oscillation analysis
 - RUN 3 (2012): 1.14 × 10²⁰ POT
 - including 0.21×10^{20} POT with 200kA horn operation (13% flux reduction at peak)
 - ND280 RUN 3 data for checking the RUN 1+2 measurement

Neutrino Beam Quality

Analysis Results

Signal and Background for T2K v_e Appearance Search **SIGNALS BACKGROUND**

Charged current quasi-elastic scattering (CCQE)

$$v_e + n \rightarrow e^- + p$$

 $v_\mu - \rightarrow v_e - \rightarrow n e^-$

🎽 p

- Electromagnetic shower and multiple scattering \rightarrow Ring has fuzzy edge
- Electron is relativistic
 - \rightarrow Opening angle is maximal

<u>Intrinsic v_e contamination in the beam (<1%)</u> \rightarrow wider energy dist.

T2K Event Selection

Selection Criteria

(determined before data analysis):

- **T2K beam timing** 1.
- Fully contained (FC) event, 2.
- 3. Vertex is in Fiducial Volume (FV)
- 4. A single e-like Cherenkov ring
- 5. Visible energy > 100 MeV
- No decay electrons 6.

74 events

80

60

40

20

0

1

2

Number of events

- π^0 mass cut, $M_{inv} < 105 \text{ MeV/c}^2$ 7.
- 8. Reconstructed $E_v < 1250 \text{ MeV}$

RUN1-3 data

Osc. v. CC

 $v_{1}+\nabla_{1}CC$

 $v_{1}^{\prime}+\overline{v}_{2}^{\prime}CC$

 $(MC \text{ w/sin}^2 2\theta_{13}=0.1)$

Single ring to select

4

≥5

NC

CCQE events

3

Number of rings

(2.556×10²⁰POT)

15

Number of events

June 15th. 2012

International Conference on New Frontiers in Physics

Selection Criteria

(determined before data analysis):

- 1. T2K beam timing
- 2. Fully contained (FC) event,
- 3. Vertex is in Fiducial Volume (FV)
- 4. A single e-like Cherenkov ring
- 5. Visible energy > 100 MeV
- 6. No decay electrons
- 7. π^0 mass cut, $M_{inv} < 105 \text{ MeV/c}^2$
- 8. Reconstructed $E_v < 1250 \text{ MeV}$

Run 1+2+3 2.56 × 10 ²⁰ POT	Data	MC Expectation w/ $\sin^2 2\theta_{13} = 0.1$				
		Signal v _µ →v _e	BG total		v _e +⊽ _e CC	NC
e-like	19	8.70	13.23	2.30	4.07	6.86
E _{vis} >100MeV	18	8.50	11.47	1.49	4.03	5.94
No decay-e	13	7.31	8.56	0.28	3.19	5.09
π^0 mass cut	10	6.82	3.67	0.07	2.21	1.39
$E_{v}^{rec} < 1250 MeV$ (MC sin ² 2 θ_{13} =0 case)	10	6.61 (0.15)	2.47 (2.58)	0.05 (0.05)	1.36 (1.47)	1.06 (1.06)
Efficiency [%]		60.7	1.0	0.0	20.0	0.9

June 15th, 2012

Evidence of v_e Appearance

- 10 v_e candidates found!
- Probability (p-value) to observe 10 or more events with 2.73±0.37(sys.) BG events is 0.08% (3.2 σ)

- Confirm the T2K 2011 results [PRL 107, 041801 (2011)] !!

- We find the Evidence of "Electron Neutrino Appearance".

TZR Neutrino Flux Prediction w/ CERN NA61

TZK ND280 v_{μ} Measurement (RUN1+2 Data)

of Events in P_{μ} vs. θ_{μ} are used in FIT to constrain the flux and v cross sections (MC predictions at ND280 and SK)

Flux + Cross Section FIT output

June 15th, 2012

TZR # of Events Predictions at T2K w/ Sys. Error

(Note: $10 v_e$ Candidates observed)

of Events prediction

Systematic Errors

	$\sin^2 2\theta_{13} = 0.1$	$\sin^2 2\theta_{13} = 0$	Error Source	$sin^2 2\theta_{13} = 0.1$	$\sin^2 2\theta_{13} = 0$
Total	9.07 ± 0.93	2.73 ± 0.37	ND fit	5.7%	8.7%
v _e signal	6.60	0.15	Cross section	7.5%	5.9%
v_{e} bkg. (beam org.)	1.32	1.42	(from other exp.)		
v_{μ} bkg. (~NC π^0)	1.02	1.02	SK + FSI	3.9%	7.7%
anti-v bkg.	0.13	0.14	Total	10.3%	13.4%
U			Error (2011 result)	~18%	~23%

Oscillation Analysis FIT (3 methods)

- Method-1: Maximum Likelihood Fit w/ Rate + (p_e, θ_e)
- Method-2: Maximum Likelihood Fit w/ Rate + reconstructed E_v
- Method-3: Feldman&Cousins for Rate only (used in previous analysis)

Method-1: Rate + (p_e, θ_e)

Best fit: $\sin^2 2\theta_{13} = 0.104^{+0.060}_{-0.045}$

Method-1: Rate + $(p_{\rho}, \theta_{\rho})$

90% CL: $0.036 < \sin^2 2\theta_{13} < 0.211$ for Normal Hierarchy ($\Delta m_{23}^2 > 0$) 90% CL: $0.045 < \sin^2 2\theta_{13} < 0.253$ for Inverted Hierarchy ($\Delta m_{23}^2 < 0$)

Method-2 and -3

All three results are consistent.

Future Prospect

Future Prospect

- Results with all data collected by June 2012 is expected soon.
- Updated v_{μ} disappearance result is coming soon for θ_{23} measurement.
 - The precision of θ_{23} with the reactor θ_{13} value is also important to explore the sub-leading term.
- Precise measurement of $P(v_{\mu} \rightarrow v_{e})$ is important to search for the sub-leading effects [CP violation, matter effect, new physics, etc] in v_{e} appearance.
- The data will increase in each new run with higher beam power.

- ~8 × 10²⁰ POT (2013)→~1.2 × 10²¹ POT (2014)→~1.8 × 10²¹ POT (2015)

 $P(v_{\mu} \rightarrow v_{e}) = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}(1.27\Delta m_{23}^{2}L/E) + CPV + matter effect + \dots$

Summary

- Updated v_e appearance results with 2.56 × 10²⁰ POT
 - Systematic uncertainties reduced from the previous analysis: $23\% \rightarrow 13\%$.
 - $-10 v_e$ candidates observed.
 - 2.73 \pm 0.73 events with sin²2 θ_{13} =0 assumption
 - Probability to observe 10 or more events = 0.08% (3.2 σ)
 - Evidence of v_e appearance!!
- θ_{13} measurement
 - $\sin^2 2\theta_{13} = 0.104^{+0.060}_{-0.045}$ (normal hierarchy, $\delta_{CP}=0$)
 - $\sin^2 2\theta_{13} = 0.128^{+0.070}_{-0.055}$ (inverted hierarchy, $\delta_{CP}=0$)
- Results with all the collected data by June 2012 will be coming soon.
 - v_e appearance
 - ν_{μ} disappearance

Backup Slides

Neutrino Oscillations as of 2012 May

Normal Hierachy 	
	$\frac{\mathbf{12K}}{\mathbf{12K}} v_{\mu} \rightarrow v_{e}$
June 15, 2011	<u>just matcation of 013 + 0 with 2.5 0 significance</u>
MINOS June 24, 2011	$\frac{\mathbf{MINOS}}{\mathbf{N}_{\mu}} V_{\mu} \rightarrow V_{e}$
	$\Theta_{13} = 0$ alsfavorea $\Theta_{1.7} \sigma_{-}$
Double Chooz Nov, 2011	<u>Double Chooz</u> $V_e \rightarrow V_e$ $\theta_{13} \neq 0 @ 3\sigma$ combined with T2K and MINOS
Dava Pay	<u>Daya Bay</u> $\overline{v}_e \rightarrow \overline{v}_e$
March, 2012	$sin^{2}2\theta_{13}=0.092\pm0.016(stat)\pm0.005(syst)$
	5.2σ significance
RENO April, 2012	<u>RENO</u> $v_e \rightarrow v_e$
	$sin^{2}2\theta_{13}=0.113\pm0.013(stat)\pm0.019(syst)$
0 0.05 0.1 0.15 0.2 0.25 0 sin ² 20 ₁₃	4.9σ significance

Neutrino Oscillations as of 2012 June

 $v_{\mu} \rightarrow v_{e}$ Oscillation Probability

$$P(v_{\mu} \rightarrow v_{e}) = \frac{4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2} \Delta_{31}}{+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21}}{+8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}(\sin\delta \cdot \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21})} CPC - 8C_{13}^{2}C_{12}C_{23}S_{12}S_{23}S_{23}(\sin\delta \cdot \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21})} CPV + 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21}} Solar - 8C_{13}^{2}S_{12}^{2}S_{23}^{2} \frac{\partial}{\partial L} (1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} + 8C_{13}^{2}S_{12}^{2}S_{23}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} - 8C_{13}^{2}S_{12}^{2}S_{23}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31} - 8C_{13}^{2}S_{12}^{2}S_{23}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31} - 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31} - 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31} - 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31} - 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31} - 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31} - 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31} - 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31} - 8C_{13}^{2}S_{13}^{2}S_{13}^{2} \frac{\partial}{\partial m_{13}^{2}} (1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31} - 8C_{13}^{2}S_{13}^{2}S_{13}^{2} - 8C_{13}^{2}S_{13}^{2}S_{13}^{2} - 8C_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2} - 8C_{13}^{2}S_{13}^$$

Future Neutrino Physics

36

- **Search for CP violation & mass hierarchy**
 - θ_{13} from reactor measurement : higher precision
 - Precise measurement of v_e appearance
 - **Comparison with reactor measurement**
 - \rightarrow hint for CP phase δ & Mass Hierarchy

T2K Neutrino Event Category

RUN1+2+3 2.56 × 10 ²⁰ POT	Data	Μ	Accidental		
		$\sin^2 2\theta_{13} = 0.1$	$\sin^2 2\theta_{13} = 0$	No Osc.	(12µs window)
FC	209	213.6	199.7	429.6	0.034
FCFV	151	150.7	140.9	297.0	0.0042
Single ring	74	79.0	70.6	205.4	-
μ-like (p _µ >200MeV/c)	55(54)	57.0(56.7)	57.0(56.7)	185.7(184.6)	-
e-like (p _e >100MeV/c)	19(18)	21.9(20.0)	13.6(11.8)	19.7(13.6)	-
Multi ring	77	71.8	70.3	91.5	-

Observation is consistent with $\sin^2 2\theta_{13} = 0.1$ case.

TZR MC Expectation for Signal and Background

RUN1+2+3	MC Expectation with $sin^2 2\theta_{13} = 0.1$					Dete
$2.56 \times 10^{20} \text{POT}$	$\nu_{\mu} + \overline{\nu}_{\mu} CC$	$v_e + \overline{v}_e CC$	NC	BG total	Signal	Data
True FV	130.99	6.82	112.61	250.41	10.89	-
FCFV	99.43	6.51	34.31	140.26	10.46	151
One-ring	56.27	4.09	9.78	70.15	8.81	74
e-like	2.30	4.07	6.86	13.23	8.70	19
E _{vis} >100MeV	1.49	4.03	5.94	11.47	8.50	18
No decay-e	0.28	3.19	5.09	8.56	7.31	13
M _{inv} <105MeV	0.07	2.21	1.39	3.67	6.82	10
E _v ^{rec} <1250MeV	0.05	1.36	1.06	2.47	6.61	10
Efficiency [%]	0.0	20.0	0.9	1.0	60.7	-

v_e Appearance Candidates

- Check for candidate events
 - Candidate event observation rate vs. POT
 - Kolmogorov-Smirnov (KS) test →probability = 53.3%
 - Momentum vs. angle between electron and incident v for candidates \rightarrow consistent with signal.
 - Timing difference from nearest bunch

 \rightarrow all candidates are inside bunch width.

Vertex Distribution

• Vertex distribution of FC sample and final sample

Event vertex evenly distributed. →No event cluster near the edge of ID

June 15th, 2012

- MC estimation to check contamination of events with true vertex outside ID
 - \rightarrow MC expectation = 0.018 events inside FV.

BG contamination from outside ID is very small

Vertex Distribution Test

- KS test for vertex distributions of candidate events.
 - Low probability for distance from wall parallel to beam.
 - Low probability from RUN1+2. \leftrightarrow RUN3 looks fine.

June 15th, 2012

International Conference on New Frontiers in Physics

T2K Neutrino Beamline Facility

Recovery from Earthquake

- Subsidence outside buildings \rightarrow Many water pipes and cables damaged.
- All the functionality were back after recovery work.
 - \rightarrow Beam operation resumed on Dec. 9th, 2011 after 9 months recovery work.

Subsidence around Beam Dump

After Earthquake (Mar. 24th)

After recovery (May 13th)

Realignment of Beamline Magnets

- Beamline magnets moved by ~10mm
 - Realignment was done.
 - \rightarrow All the magnets aligned within 1mm.

Residual from ideal beam orbit