θ_{13} Analysis

Observation of Electron-Antineutrino Disappearance at Daya Bay

Soeren Jetter Institute of High Energy Physics on behalf of the Daya Bay Collaboration

Color to al

1st International Conference on New Frontiers in Physics

June 15, 2012 Chania, Greece

Three Neutrino Oscillation: PMNS Matrix

= $\theta_{12} \sim 34^\circ$ established through solar experiments and KamLAND: large but nor maximal ______

 θ_{13} only mixing angle not previously well established: Small? Zero?

- Solar + KamLAND: G.L. Fogli et al., Phys. Rev. D 84, 053007 (2011)
- MINOS: P. Adamson et al., Phys. Rev. Lett. 107, 181802 (2011)
- T2K: K. Abe et al., Phys. Rev. Lett. 107 041801 (2011)
- Double CHOOZ: Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012)

- Solar + KamLAND: G.L. Fogli et al., Phys. Rev. D 84, 053007 (2011)
- MINOS: P. Adamson et al., Phys. Rev. Lett. 107, 181802 (2011)
- T2K: K. Abe et al., Phys. Rev. Lett. 107 041801 (2011)
- Double CHOOZ: Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012)

- Tensions between solar, reactor oscillations suggest θ₁₃ > 0
 Appearance of ν_e in ν_μ accelerator beam
- Double Chooz reported improved single detector measurement

- Solar + KamLAND: G.L. Fogli et al., Phys. Rev. D 84, 053007 (2011)
- MINOS: P. Adamson et al., Phys. Rev. Lett. 107, 181802 (2011)
- T2K: K. Abe et al., Phys. Rev. Lett. 107 041801 (2011)
- Double CHOOZ: Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012)

- Tensions between solar, reactor oscillations suggest θ₁₃ > 0
- Appearance of ν_e in ν_μ accelerator beam
- Double Chooz reported improved single detector measurement

- Solar + KamLAND: G.L. Fogli et al., Phys. Rev. D 84, 053007 (2011)
- MINOS: P. Adamson et al., Phys. Rev. Lett. 107, 181802 (2011)
- T2K: K. Abe et al., Phys. Rev. Lett. 107 041801 (2011)
- Double CHOOZ: Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012)

Reactor Neutrino Oscillation

 θ_{13} can be revealed by a deficit of reactor antineutrinos at ~ 2 km.

Relative measurement with multiple detectors

 θ_{13} Analysis

Daya Bay: A Powerful Neutrino Source at an Ideal Location

Mountains shield detectors from cosmic ray background

Daya Bay NPP $2 \times 2.9 \, \text{GW}_{\text{th}}$

Entrance to Daya Bay experiment tunnels

Among the top 5 most powerful reactor complexes in the world, 6 cores produce 17.4 GW_{th} power, 35×10^{20} neutrinos per second

Ling Ao I NPP $2 \times 2.9 \,\text{GW}_{\text{th}}$

Ling Ao II NPP $2 \times 2.9 \,\text{GW}_{\text{th}}$

Daya Bay	

An International Effort: 228 Collaborators from 28 Institutions

North America (16)

Brookhaven Natl Lab, Cal Tech, Cincinnati, Houston, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer Polytech, UC Berkeley, UCLA, Wisconsin, William & Mary, Virginia Tech, Illinois, Siena College

Europe (2)

Charles University, Dubna

Asia (20)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci and Tech, CGNPG, CIAE, Dongguan Polytech, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ. Experimental Layout

645 m tunnel

3 underground Experimental Halls

Surface Assembly Building Ling Ao II NPP Ling Ao I NPP 3 underground Experimental Halls

Surface Assembly Building

*Relative detector-core positions known to 3 cm and and a second se

645 m tunnel

Experimental Layout

Daya Bay Near Site (Hall 1) 363 m^{*} from Daya Bay 98 m overburden

Daya Bay NPP

Ling Ao II NPP Ling Ao I NPP

6 operating detectors with 120 t total target mass

■ Hall 1: 2 det.

 θ_{13} Analysis

Experimental Layout

Ling Ao Near Site (Hall 2) 481 m^{*} from Ling Ao I 526 m^{*} from Ling Ao II 112 m overburden

645 m tunnel

3 underground Experimental Halls

Surface Assembly Building

Relative detector-core positions known to 3 cm

Daya Bay Near Site (Hall 1) 363 m^{*} from Daya Bay 98 m overburden

Daya Bay NPP

Ling Ao II NPP Ling Ao I NPP

6 operating detectors with 120 t total target mass

■ Hall 1: 2 det.

■ Hall 2: 1 det. (+1)

Context

Daya Bay

Neutrino Selection

 θ_{13} Analysis

Far Site (Hall 3) 1615 m^{*} from Ling Ao I 1985 m^{*} from Daya Bay 350 m overburden

> 3 underground Experimental Halls

Surface Assembly Building

Relative detector-core positions known to 3 cm

Experimental Layout

Ling Ao Near Site (Hall 2) 481 m* from Ling Ao I 526 m* from Ling Ao II 112 m overburden

645 m tunnel

Daya Bay Near Site (Hall 1) 363 m^{*} from Daya Bay 98 m overburden

Daya Bay NPP

Ling Ao II NPP Ling Ao I NPP

6 operating detectors with 120 t total target mass

- Hall 1: 2 det.
- Hall 2: 1 det. (+1)
- Hall 3: 3 det. (+1)

Antineutrino Detection via Inverse Beta Decay

Neutrino energy: $E_{\bar{\nu}_e} \approx T_{e^+} + T_n + (m_n - m_p) + m_{e^+} \approx T_{e^+} + 1.8 \, {\rm MeV}$

Higher energy and shorter capture time on Gd improve background rejection

Antineutrino Detector (AD) Design

6 functionally identical detectors reduce systematic uncertainties

	3 zone cylindrical vessels			
	Liquid	Function		
Inner acrylic	Gd-doped liquid scint.	20 t	Antineutrino target	
Outer acrylic	Liquid scintillator	20 t	Gamma catcher	
Stainless steel	Mineral oil	40 t	Radiation shielding	

192 8 inch PMTs in each detector

Top and bottom reflectors increase light yield and flatten detector response

 $(\frac{7.5}{\sqrt{E}} + 0.9)\%$ energy resolution

Calibration: Key to Reduction of Detector-Related Systematics

- 3 fully automated units per detector deploy sources along z-axis
- I Center: time evol., energy scale, non-linearity
- Edge: efficiency, space response
- 3 γ catcher: efficiency, space response

4 calibration sources in each unit

- $\begin{array}{c} \mbox{I} & \mbox{68} \mbox{Ge} & (2 \times 511 \mbox{ keV } \gamma \mbox{ source}) \\ \mbox{positron threshold, non-linearity} \end{array}$
- 2 60 Co (1.17 + 1.33 MeV γ source) energy scale, response function
- ☑ ²⁴¹Am¹³C (neutron source) neutron capture time
- LED diffuser ball
 PMT timing, gain and relative QE

 $r = 1.775 \,\mathrm{m}$ r = 0 $r = 1.35 \,\mathrm{m}$

Antineutrino Detector Assembly

Muon Tagging System

Complementary systems: 2.5 meter thick two-section water shield and RPC cover

- Dual-purpose ultra pure water pool
 - Shields natural and cosmogenic background and attenuates rock radioactivity and fast neutrons
 - Serves as Cherenkov detector to observe the presence of cosmic ray muons
 - 1 m outer layer of water veto
 - >2.5 m inner layer of water veto
 - 288 8" PMTs in each near hall
 - 384 8" PMTs in the Far Hall
- 2 4-layer RPC modules above pool
 - 54 modules in each near hall
 - 81 modules in Far Hall

Goal efficiency: $\epsilon_{\mu} > 99.5\%$ with uncertainty $\sigma_{\epsilon} < 0.25\%$

Daya Bay	

Daya Bay Experimental Hall 1 Installation

- Daya Bay Near Site began operation on 15 August 2011
- Stable data-taking started on 23 September 2011

Experimental Hall 2+3 Installation

Christmas Eve 2011: Start of simultaneous 3-site data-taking

- Ling Ao Near Hall began operation with 1 AD on 5 November 2011
- Far Hall started data-taking with 3 ADs on 24 December 2011
- Last remaining pair of ADs in assembly, will be installed in 2012

Analyzed Data Sets

Analyzed Data Sets

Analyzed Data Sets

	Neutrino Selection	
Data	a analysis approach	
	Blind analysis	
Nominal values for: Reactor flux Target mass	$\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left(\frac{{\sf P}_{\rm sur}(E,E)}{{\sf P}_{\rm sur}(E,E)}\right)$	$\left(\frac{f}{-n}\right)$

	Neutrino Selection	

Side-by-Side Detector Comparison

Figure: Side-by-side comparison of full spectrum after flasher and muon removal

Figure: Energy spectrum of spallation neutrons for all six detectors

Multiple detectors allow detailed comparison and cross-checks

- Two ADs in Daya Bay Near Site Hall have functionally identical response
- Response of all detectors to neutrons constrains largest systematic uncertainty

$$AD 1/2 A symmetry = 2(N_{AD1} - N_{AD2})/(N_{AD1} + N_{AD2})$$

Antineutrino (IBD) Selection

Use IBD prompt+delayed coincidence signal to select antineutrinos

Selection steps:

- Reject spontaneous PMT light emission ("flashers")
- Prompt positron:
 0.7 MeV < E_p < 12 MeV
- I Delayed neutron: $6.0 \,\mathrm{MeV} < E_{\mathrm{d}} < 12 \,\mathrm{MeV}$
- $\ \, \hbox{ Neutron capture time:} \\ 1\,\mu {s} < \Delta t < 200\,\mu {s}$
- Muon veto:
 - Water pool muon (>12 hit PMTs): Reject 0.6 ms
 - AD muon (>20 MeV): Reject 1 ms
 - AD shower muon (>2.5 GeV): Reject 1 s
- $\label{eq:multiplicity: No other signal > 0.7 MeV} \hfill in -200 \,\mu s \mbox{ to } 200 \,\mu s \mbox{ of IBD.}$

	Neutrino Selection	

Spectra of Antineutrino Candidates

Except for prompt-delayed distance, all spectra are background-subtracted

Low rates of total background

- = 5% \pm 0.3% background/signal ratio for Far Hall, 2% \pm 0.2% for both near halls
- Accidental coincidences single largest contributor to total background rate
- ²⁴¹Am¹³C source and ⁹Li/⁸He from muon spallation largest sources of uncertainty

Signal and Background Summary

	Near Sites			Far Site		
	AD 1	AD 2	AD 3	AD 4	AD 5	AD 6
IBD candidates	69121	69714	66473	9788	9669	9452
DAQ live time (days) Muon veto time (days) $\epsilon_{\mu} \cdot \epsilon_{m}$	127. 22.5656 0.8015	3763 22.9901 0.7986	127.3763 18.1426 0.8364	2.3619 0.9555	126.2646 2.3638 0.9552	2.4040 0.9547
Accidentals (per day) Fast-neutron (per day) ⁹ Li/ ⁸ He (per AD per day) Am-C corr. (per AD per day) ¹³ C ¹⁶ O backer. (per day)	9.73±0.10 0.77±0.24 2.9=	9.61±0.10 0.77±0.24 ±2.0	7.55±0.08 0.58±0.33 2.0±1.1 0.2±0	3.05 ± 0.04 0.05 ± 0.02	3.04 ± 0.04 0.05 ± 0.02 0.22 ± 0.12	2.93 ±0.03 0.05±0.02
C O backgr. (per day)	0.06±0.04	0.07 ±0.04	0.05±0.05	0.04±0.02	0.04±0.02	0.04±0.02
IBD rate (per day)	662.47±3.00	670.87±3.01	613.53±2.69	77.57 ± 0.85	76.62 ± 0.85	74.97±0.84

Table: The background and IBD rates were corrected for the $\epsilon_{\mu} \cdot \epsilon_{m}$ efficiency.

Collected more than 200k antineutrino interactions

- Consistent rates for side-by-side detectors
- Uncertainties dominated by statistics

Summary of Uncertainties

		Detector		
	Efficiency	Correlated	Uncorrelated	
Target Protons		0.47%	0.03%	
Flasher cut	99.98%	0.01%	0.01%	
Delayed energy of	ut 90.9%	0.6%	0.12%	 Only uncorrelated
Prompt energy of	ut 99.88%	0.10%	0.01%	
Multiplicity cut		0.02%	< 0.01%	
Capture time cut	98.6%	0.12%	0.01%	
Gd capture ratio	83.8%	0.8%	<0.1%	Largest systematics
Spill-in	105.0%	1.5%	0.02%	
Livetime	100.0%	0.002%	<0.01%	statistics $(\sim 1\%)$
Combined	78.8%	1.9%	0.2%	
	React	or		
Correlated	I	Uncorrel	ated	
Energy/fission	0.2%	Power	0.5%	- Impact of
IBD/fission	3%	Fission fraction	0.6%	uncorrelated reactor
		Spent fuel	0.3%	
Combined	3%	Combined	0.8%	measurement

Summary of Uncertainties

		Detector		
	Efficiency	Correlated	Uncorrelated	
Target Protons Flasher cut Delayed energy cut Prompt energy cut Multiplicity cut Capture time cut Gd capture ratio Spill-in Livetime	99.98% 90.9% 99.88% 98.6% 83.8% 105.0% 100.0%	0.47% 0.01% 0.6% 0.10% 0.02% 0.22% 0.8% 1.5% 0.002%	$\begin{array}{c} 0.03\% \\ 0.01\% \\ 0.12\% \\ 0.01\% \\ < 0.01\% \\ < 0.01\% \\ < 0.1\% \\ 0.02\% \\ < 0.01\% \end{array}$	 Only uncorrelated uncertainties relevant to near/far oscillation analysis Largest systematics smaller than far situ statistics (~ 1%)
Combined	78.8%	1.9%	0.2%	
	Reacto	r		
Correlated		Uncorre	ated	

Correlate	d	Uncorrelated		
Energy/fission IBD/fission	0.2% 3%	Power Fission fraction Spent fuel	0.5% 0.6% 0.3%	 Impact of uncorrelated reactor systematics reduced
Combined	3%	Combined	0.8%	by relative measurement

Combined

3%

Summary of Uncertainties

		Detector		
	Efficiency	Correlated	Uncorrelated	
Target Protons Flasher cut Delayed energy c Prompt energy c Multiplicity cut Capture time cut Gd capture ratio Spill-in Livetime Combined	99.98% 90.9% ut 99.88% 98.6% 83.8% 105.0% 100.0% 78.8%	0.47% 0.01% 0.6% 0.10% 0.02% 0.12% 0.8% 1.5% 0.002% 1.9%	0.03% 0.01% 0.12% 0.01% <0.01% <0.01% <0.1% 0.02% <0.01% 0.2%	 Only uncorrelated uncertainties relevant to near/far oscillation analysis Largest systematics smaller than far site statistics (~ 1%)
	Reacto	or		
Correlated		Uncorrel	ated	
Energy/fission IBD/fission	0.2% 3%	Power Fission fraction Spent fuel	0.5% 0.6% 0.3%	 Impact of uncorrelated reactor systematics reduced

0.8%

Combined

Summary of Uncertainties

		Detector		_
	Efficiency	Correlated	Uncorrelated	I
Target Protons	00.00%	0.47%	0.03%	
Flasher cut	99.98%	0.01%	0.01%	 Only uncorrelated
Prompt energy (ut 90.9%	0.0%	0.12%	uncertainties
Multiplicity cut		0.02%	< 0.01%	relevant to near/far
Capture time cu	t 98.6%	0.12%	0.01%	oscillation analysis
Gd capture ratio	83.8%	0.8%	< 0.1%	Largest systematics
Spill-in	105.0%	1.5%	0.02%	smaller than far site
Livetime	100.0%	0.002%	<0.01%	statistics ($\sim 1\%$)
Combined	78.8%	1.9%	0.2%	
	React	or		
Correlated	1	Uncorre	lated	
Energy/fission	0.2%	Power	0.5%	
IBD/fission	3%	Fission fraction	0.6%	Impact of
,		Spent fuel	0.3%	uncorrelated reactor
Combined	3%	Combined	0.8%	by relative measurement

Antineutrino Rate vs. Time

Figure: Expected vs. measured IBD rate

Detected rate strongly correlated with reactor flux expectations

- Normalization determined by fit to data
- Absolute normalization is within a few percent of expectations

Antineutrino Near/Far Comparison

Near/Far rate comparison:

$$R = \frac{N_{\text{meas}}}{N_{\text{pred}}}$$
$$= \frac{M_4 + M_5 + M_6}{\sum_{i=4}^{6} \alpha_i (M_1 + M_2) + \beta_i M_3}$$
$$= 0.944 \pm 0.007(\text{stat}) \pm 0.003(\text{syst})$$

- $\begin{array}{ll} M_{j} \colon & \text{measured rates in each AD} \\ \alpha_{i}, \, \beta_{i} \colon & \text{weights determined from} \\ \text{baselines and reactor fluxes} \end{array}$
- Near/Far spectral distortion consistent with oscillation*
- * Spectral systematics not fully studied, θ_{13} shape analysis not recommended

Clear observation of an antineutrino deficit at the Far Site: $R=0.944\pm0.008$

Rate-only θ_{13} analysis

- Estimates θ₁₃ using measured rates in each detector
- Uses standard χ^2 approach
- Far vs. near relative measurement, absolute rate is not constrained
- Consistent results obtained by independent analyses, different reactor flux models

First measurement of $\sin^2 2\theta_{13}$ in March 2012

- $\sin^2 2\theta_{13} = 0.092 \pm 0.016(\text{stat}) \pm 0.005(\text{syst})$
- Excludes $\sin^2 2\theta_{13} = 0$ at 5.2σ
- Details in PRL 108, 171803 (2012)

Rate-only θ_{13} analysis

- Estimates θ₁₃ using measured rates in each detector
- Uses standard χ^2 approach
- Far vs. near relative measurement, absolute rate is not constrained
- Consistent results obtained by independent analyses, different reactor flux models

Improved result June 2012: Most precise measurement of $\sin^2 2\theta_{13}$ to date

sin
$$^2 2 heta_{13} = 0.089 \pm 0.010 (ext{stat}) \pm 0.005 (ext{syst})$$

- Excludes $\sin^2 2\theta_{13} = 0$ at 7.7 σ
- To be submitted to Chinese Physics C

	θ_{13} Analysis

	θ_{13} Analysis

	θ_{13} Analysis

	θ_{13} Analysis

	θ_{13} Analysis

	θ_{13} Analysis

	Neutrino Selection	θ_{13} Analysis
Si	ummary	
First unambiguous observation of ele	ectron-antineutrino disappearance at ~ 2 ki	m
$R=0.944\pm0.2$	$.007(stat)\pm0.003(syst)$	

Interpretation in terms of neutrino oscillation excludes $\theta_{13} = 0$ at more than 7σ , shuts door wide open to CP violation searches in the neutrino sector

 $\sin^2 2 heta_{13} = 0.089 \pm 0.010(\text{stat}) \pm 0.005(\text{syst})$

Expect more from Daya Bay:

- Last pair of detectors to be installed this year
- Best sensitivity to θ_{13} among all experiments in operation or under construction
- More results to come soon: reactor flux and shape analysis, Δm_{32}^2 measurement

Backup

Gd-Doped Liquid Scintillator

Daya Bay liquid scintillator cocktail

- LAB + Gd (0.1%) + PPO (3 g/L) + bis-MSB (15mg/L)
- 185-ton Gd-LS production + 196-ton LS production
- 1-year 1-ton prototype monitoring on Gd-LS stability

- Load cells measure 20 ton target mass to 3kg (0.015%)
- Cross-checked by coriolis mass flow meters
- Target mass = total mass - overflow mass

Identicalness of Liquids

	Control po	ssible sources of non-i	denticalness
1	Batch-to-batch production variations	\longrightarrow	Storage tanks mix and hold 8 batches
2	Tank-to-tank variations	\longrightarrow	Fill each AD evenly from all 5 storage tanks
3	Storage tank vertical stratification	\longrightarrow	Recirculate storage tanks
4	Time-dependent optical properties	\longrightarrow	No evidence for this, but fill detectors in pairs anyway

Ensure identical properties between all detectors

- H/C ratio
- H/Gd ratio
- Optical properties

Trigger Performance

Trigger thresholds

- Antineutrino detecors:
 - PMT multiplicity > 45 (digital trigger)
 - Visible energy > 0.4 MeV (analog trigger)
- Inner waterpool veto: > 6 PMT
- Outer waterpool veto: > 7 PMT

Trigger efficiency

- Measurement from LED light and ⁶⁸Ge source
- No measureable inefficiency > 0.7 MeV
- Minimum expected energy for prompt neutrino signal ~0.95 MeV

Calibration: PMT Gain

Figure: ADC charge from single photons

Figure: Variation of PMT gain with time

Weekly LED deployments measure charge due to single photons

Calibration: Energy

Energy vs time

Energy vs position

Energy resolution

Spontaneous PMT Light Emission (Flashing)

Two discriminators based on common features of AD flashers

Flashing PMT has the largest charge: d_{max} = Q_{max}/Q_{sum}
"Shines" light to opposite side of detector: d_{quad} = Q_{quad1}/Q_{quad2} + Q_{quad4}

Efficient rejection criterion

$$\textit{FID} = \log \left(\left(\frac{d_{\text{max}}}{0.45} \right)^2 + \left(\frac{d_{\text{quad}}}{1} \right)^2 \right) < 0$$

Multiplicity

Ensure exactly one prompt-delayed coincidence

- Uncorrelated backgrounds and IBD events results in ambiguous prompt-delayed signals
- \blacksquare Reject all IBD candidates with >2 triggers above 7 MeV in in $-200\,\mu s$ to $200\,\mu s$ window
- Introduces $\sim 2.5\%$ inefficiency, with negligible uncertainty

Delayed Energy Cut

Figure: Intrinsic energy variation: all sources in all detectors are within a band of $\sim 0.5\%$

- Largest uncertainty between detectors: Some gammas escape scintillating volume, visible as tail of Gadolinium capture peak
- Use variations in energy peaks to constrain relative efficiency

Efficiency variations estimated at 0.12%

Background: Accidental

Two single signals can accidentally mimic an antineutrino (IBD) signal

Rate and spectrum can be accurately calculated from singles data:

$$N_{acc} = \sum_{i} N_{n-\text{like singles}}^{i} \cdot (1 - e^{-R_{e^+-\text{like triggers}}^{i} \cdot 199 \, \mu s}) \pm rac{N_{acc}}{\sqrt{\sum_{i} N_{n-\text{like singles}}^{i}}}$$

- Complementary approaches estimate consistent rates:
 - 1 Prompt-delayed distance distribution
 - 2 Off-window coincidence

Background: $\beta - n$ Decay

Generated by cosmic rays

Long-lived

⁹Li:
$$\tau = 178 \text{ ms}, Q = 13.6 \text{ MeV}$$

- ⁸He: au = 119 ms, Q = 10.6 MeV
- Mimic antineutrino signal
 - Prompt: β-decay
 - 2 Delayed: neutron capture

Measure rate and subtract statistically

- Rate evaluated from the distribution of the time since last muon based on the known decay times
- Compare results with and without requirement of detected co-production of neutrons to estimate uncertainty

Background: Fast Neutrons

Fast neutrons produced by cosmic muons external to the AD

May enter the AD and mimic IBD signal:

- Prompt: Recoil proton(s) produced by slowing neutron
- 2 Delayed: Capture of the neutron

Background: ²⁴¹Am¹³C neutron source

Figure: Position of neutron capture from simulation

Correlated background

- Neutrons emitted from the \sim 0.5 Hz ²⁴¹Am¹³C neutron source parked on top of AD
- Produce fake prompt-delayed coincidence:
 - 1 γ via inelast. scattering with ⁵⁶Fe
 - Neutron capture on Fe-Cr-Mn-Ni

Figure: MC/data comparison of single delayed-type candidates from the source

Estimation based on MC

- Normalization in MC constrained by the measured rate of single delayed-type candidates from this source
- Simulation predicts a 0.2/day/detector correlated background

Reactor Flux Expectation

Antineutrino flux estimated for each core

$$S(E_{\nu}) = \frac{W_{\text{th}}}{\sum_{i} (f_i/F) e_i} \sum_{i}^{\text{isotopes}} (f_i/F) S_i(E_{\nu})$$

- Provided by reactor operators:
 - Thermal power data: W_{th}
 - Relative isotope fission fractions: f_i
- Energy released per fission: e_i
 - V. Kopekin et al., Ph. Atom. Nucl. 67, 1892 (2004)
- Antineutrino spectra per fission:
 S_i(E_v)
 - K. Schreckenb. et al., Phys. Lett. B160, 325 (1985)
 - A. A. Hahn et al., Phys. Lett. B218, 365 (1989)
 - P. Vogel et al., Phys. Rev. C24, 1543 (1981)
 - T. Mueller et al., Phys. Rev. C83, 054615 (2011)
 - P. Huber, Phys. Rev. C84, 024617 (2011)

Figure: Fission fractions of reactor isotopes as a function of burn-up from a Monte Carlo simulation of reactor core D1

Impact of flux model on far vs. near oscillation measurement negligible

Full Definition of χ^2

The value of sin² $2\theta_{13}$ was determined with a χ^2 constructed with pull terms accounting for the correlation of the systematic errors,

$$\begin{split} \chi^2 &= \sum_{d=1}^6 \frac{\left[M_d - T_d \left(1 + \varepsilon + \sum_r \omega_r^d \alpha_r + \varepsilon_d\right) + \eta_d\right]^2}{M_d + B_d} \\ &+ \sum_r \frac{\alpha_r^2}{\sigma_r^2} + \sum_{d=1}^6 \left(\frac{\varepsilon_d^2}{\sigma_d^2} + \frac{\eta_d^2}{\sigma_B^2}\right), \end{split}$$

where M_d are the measured IBD events of the *d*-th AD with backgrounds subtracted, B_d is the correspoding backgrounds, T_d is the prediction from neutrino flux, MC, and neutrino oscillations, ω_r^d is the fraction of IBD contribution of the *r*-th reactor to the *d*-th AD determined by baselines and reactor fluxes.

Projected Sensitivity

Assuming no improvement on systematic uncertainties