

Nicolas ARNAUD

Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS & Université Paris Sud

On behalf of the **superB** collaboration

ICFP 2012 Kolymbari, June 10-16

Outline

- SuperB in a nutshell
- The SuperB physics program
 - Why a super flavour factory?
 - A wide physics program
- The SuperB collider
- The SuperB detector
 - Zoom on the charged particle identification (PID) system
- Status of the SuperB project
- Summary

SuperB in a nutshell

- Precision flavor physics measurements
 - Observables provide crucial & complementary information for understanding New Physics (NP) in the LHC era
 - ×10 better precision than present B-Factories
- Very high luminosity
 - Asymmetric e^+e^- collider at the $\Upsilon(4S)$ resonance
 - \rightarrow Energy can be moved from $\psi(3770)$ to $\Upsilon(6S)$
 - Luminosity of 10³⁶ cm⁻²s⁻¹ or higher
 - → Collect 75 ab⁻¹ in 5 years of nominal running based on 'New Snowmass Year'
- Innovative accelerator concept
 - Luminosity 100× higher w.r.t. BaBar with ~same wall plug power
 - Polarized electron beam
 - Ability to run at various energies
 - Luminosity as high as 4 10³⁶ cm⁻²s⁻¹ foreseen
- Reuse of major pieces of equipment
 - PEP-II B-Factory and BaBar

The SuperB physics program

The SuperB physics goals

- Pre-LHCb era: BaBar, Belle and the Tevatron
 - CKM theory confirmed at leading order
 - Indirect constraints on NP that are still valid (e.g. H⁺ searches)
- LHCb will have re-defined some flavour physics areas when SuperB starts running
- If NP found at the LHC, focus on understanding the overall framework
 - → Crucial role for SuperB/LHCb
- SuperB very ambitious goal: unravel the flavor structure of NP
 - Very good sensitivity through CP violation asymmetries and rare decays
 - → Double-prong attack on the quark and lepton sectors
 - SuperB results will help constraining flavour dynamics at high energy
- Very large dataset (≥75 ab⁻¹) needed to reach meaningful sensitivity in leptonic sector
- No indications so far of any NP
 - → Key role for SuperB in a « super-standard » picture

The case for SuperB

- Energy path vs. quantum path
 - Model-dependent indirect NP probes can reach higher scales than direct searches
 - \rightarrow Size of couplings
 - Model-dependent direct searches for NP have found nothing so far (unfortunately)
- Scenarii
 - LHC finds NP incompatible with flavor data: theory to be fixed
 - LHC finds NP compatible with flavor data: use flavor data to constraint models
 - LHC finds nothing: indirectly probe high energy effects
 - → All offer an important role to SuperB
- Decoding NP will not be easy
- Many viable models of NP (still)
 - → Each model guides some dedicated analysis
 - At most one of them is right

Time dependent (TD) analysis: BaBar vs. SuperB

- The two main ingredients are Δt resolution and flavor tagging
 - → Changes between BaBar and SuperB
- Smaller boost at SuperB
 - \rightarrow smaller Δz and hence worst Δt in principle
- Therapy
 - Additional silicon layer (L0) at 1.60 cm radius
 - Reduce beam spot size
 - Lower material budget for the beam pipe
- \Rightarrow Preliminary studies show that the Δt precision is comparable to the BaBar one
- Flavor tagging based on multivariate techniques like in BaBar
 - Isolated high-momentum lepton, K or soft π (from D* decays)
 - Figure of merit: $Q = \varepsilon_{tag}(1-2\omega)^2$ with $\varepsilon_{tag} = tagging$ efficiency and $\omega = mistag$ probability
 - \rightarrow Resolution on the TD analysis parameters (S, C) scales like $1/\sqrt{Q}$
- Expectation: $Q_{SuperB} > Q_{BaBar}$
 - Better vertexing, larged tracking coverage and improved charged particle identification (PID)

τ Lepton Flavor Violation (LFV)

- v mixing leads to a low level of charged LFV in the SM (BF \sim 10⁻⁵⁴)
 - → Enhancements to observable levels are possible with new physics
- e⁻ beam polarisation helps suppress background
- Two orders of magnitude improvement at SuperB over current limits
- Hadron machines are mainly not competitive with e⁺e⁻ machines for these measurements

Only a few modes extrapolated for SuperB so far

Precision Electroweak Measurements

- $\sin^2\theta_{\rm W}$ can be measured with polarised e⁻ beam
 - $\rightarrow \sqrt{s}=\Upsilon(4S)$ is theoretically clean, c.f. b-fragmentation at Z pole

For ongoing and future experiments, arbitrary values of $\sin^2(\theta_w)$ have been chosen to illustrate the expected experimental sensitivities

• Measure LR asymmetry in $\begin{cases} e^+e^- & \to & c\overline{c} \\ e^+e^- & \to & \mu^+\mu^- \\ e^+e^- & \to & \tau^+\tau^- \end{cases}$

at the $\Upsilon(4S)$ to same precision as LEP/SLC at the Z-pole

- \rightarrow Can also perform crosscheck at $\psi(3770)$
- Complements measurements planned/underway at lower energies (QWeak/MESA) 9

B_{u,d} Physics: Rare Decays

- Example: $B \to K^{(*)} \nu \overline{\nu}$
- Need 75 ab⁻¹ to observe this mode

Hot news: Recent BaBar update on $B \rightarrow D^{(*)} \tau \nu$ is 3.4 σ away from SM

• With more than 75 ab⁻¹ we could measure polarisation

$$\epsilon = \frac{\sqrt{|C_L^\nu|^2 + |C_R^\nu|^2}}{|(C_L^\nu)^{\rm SM}|} \;, \qquad \eta = \frac{-{\rm Re}\,(C_L^\nu C_R^{\nu*})}{|C_L^\nu|^2 + |C_R^\nu|^2} \qquad \text{Sensitive to models with Z penguins and RH currents.}$$

Charm Physics

- Collect data at $\Upsilon(4S)$ and at the $D\overline{D}$ threshold
 - → Benefit charm mixing and CPV measurements

- Integrating 500 fb⁻¹ at the $\psi(3770)$ provides knowledge of the average strong phases to be used in various channels and improves the DP models
- This can be achieved in ≈ 1 year with minimal modifications of the machine
- Also useful for measuring the Unitarity triangle angle γ
 - \rightarrow Strong phase in D \rightarrow K $\pi\pi$ Dalitz plot

Precision CKM constraints

• Unitarity Triangle Angles

$$\bullet$$
 $\sigma(\alpha) = 1-2^{\circ}$

■
$$\sigma(\beta) = 0.1^{\circ}$$

$$\sigma(\gamma) = 1-2^{\circ}$$

CKM Matrix Elements

- |V_{ub}|
 - \Box Inclusive $\sigma = 2\%$
 - \Box Exclusive $\sigma = 3\%$
- |V_{cb}|
 - \Box Inclusive $\sigma = 1\%$
 - \Box Exclusive $\sigma = 1\%$
- $\blacksquare |V_{us}|$
 - \rightarrow Can be measured precisely using τ decays
- $\blacksquare |V_{cd}|$ and $|V_{cs}|$
 - → Can be measured at/near charm threshold

• SuperB measures the sides and angles of the Unitarity Triangle

Interplay between Measurements and Theory

• More information on the golden matrix can be found in arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312.

SuperB	Observable/mode	H^+	MFV	non-MFV	NP	Right-handed	LTH	SUSY				
scope		high $\tan \beta$			Z penguins	currents		AC	RVV2	AKM	δLL	FBMSSM
✓	$ au ightarrow \mu \gamma$							***	***	*	***	***
✓	$ au ightarrow \ell \ell \ell$						***					
		★★★ (CKM)										
✓	$B o K^{(*)+} u \overline{ u}$			*	***			*	*	*	*	*
✓	$S ext{ in } B o K^0_{\scriptscriptstyle S} \pi^0 \gamma$					***						
✓	S in other penguin modes			* * *(CKM)		***		***	**	*	***	***
✓	$A_{CP}(B o X_s\gamma)$			***		**		*	*	*	***	***
✓	$BR(B o X_s\gamma)$		***	*		*						
	$BR(B o X_s \ell \ell)$			*	*	*						
✓	$B \to K^{(*)} \ell \ell$ (FB Asym)							*	*	*	***	***
	$B_s o \mu \mu$							***	***	***	***	***
	β_s from $B_s \to J/\psi \phi$							***	***	***	*	*
✓	$ a_{sl} $						***					
✓	Charm mixing							***	*	*	*	*
✓	CPV in Charm	**									***	

- Combine measurements to elucidate NP structure
 - → Decoding NP won't be easy
 - As many measurements as possible needed

SuperB Physics Program in a Nutshell

- SuperB will probe NP observables in wide range of decays
- Pattern of deviation from SM can be used to identify structure of NP
- Clean experimental environment means clean signals in many modes
- Polarised e⁻ beam benefits for various searches
- Charm threshold running adds many more observables and improves potential of SuperB

Unique features

- Measure angles and sides of the Unitarity triangle
- Physics TDR in progress

The SuperB collider

The SuperB collider in one slide

- Luminosity $\geq 10^{36}$ cm⁻² s⁻¹
 - \rightarrow Integrated luminosity ≥ 75 ab⁻¹ after five years of nominal running
- Innovative design of the interaction region: crab-waist scheme
 - Luminosity gain by squeezing the vertical size of the beams (30 nm)
 - Collisions at large Piwinski angle + crab sextupoles
 - → Beams collide in the minimum waist region + machine more stable
 - Currents similar to BaBar & Belle: beam background under control
- Data taking over a large wide energy range: from $\psi(3770)$ to $\Upsilon(6S)$
- Asymmetric collider with closer beam energies
 - → Otherwise, Touschek lifetime issues
- e⁻ beam polarized up to ~80%
 - → Resonances define the Low Energy Ring energy: 4.18 GeV
 - → High Energy Ring (e⁺) energy: 6.7 GeV
- Reduced $\beta \gamma = 0.24$ (was 0.56 for BaBar)
 - → 1 cm beam pipe radius First measurement @ 1.6 cm (SVT layer 0)

Parameter Table

- From progress report (2010)
 - → Limited modifications since then
- Baseline + 2 options
 - Lower emittance
 - Higher currents
- Baseline
 - Larger emittance due to intrabeam scattering
 - Asymmetric currents
- RF power includes
 - Synchrotron radiation
 - High order modes
- Also: capability to run at τ/cc̄ threshold with high luminosity

		Base Line		Low Emittance		High Current		
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	
LUMINOSITY	cm ⁻² s ⁻¹	1.00E+36		1.00E+36		1.00E+36		
Energy	GeV	6.7 4.18		6.7 4.18		6.7	4.18	
Circumference	m	1258.4		1258.4		1258.4		
X-Angle (full)	mrad	6	6	66		66		
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	
β _у @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	
Coupling (full current)	9/0	0.25	0.25	0.25	0.25	0.5	0.5	
Emittance x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	
Emittance y	pm	5	6.15	2.5	3.075	10	12.3	
Bunch length (full current)	mm	5	5	5	5	4.4	4.4	
Beam current	mA	1892	2447	1460	1888	3094	4000	
Buckets distance	#	2		2		1		
Ion gap	%	2		2		2		
RF frequency	MHz	476.		476.		476.		
Revolution frequency	MHz	0.238		0.238		0.238		
Harmonic number	#	1998		1998		1998		
Number of bunches	#	978		978		1956		
N. Particle/bunch (10 ¹⁰)	#	5.08	6.56	3.92	5.06	4.15	5.36	
σ_{x} effective	μm	165.22	165.30	165.22	165.30	145.60	145.78	
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.0254	
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	
$\Sigma_{\rm x}$ effective	μm	233.35		233.35		205.34		
$\Sigma_{\rm y}$	μm	0.050		0.030		0.076		
Hourglass reduction factor		0.950		0.950		0.950		
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	
Tune shift y		0.097	0.097	0.0891	0.0892	0.0684	0.0687	
Longitudinal damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	
Momentum compaction (10 ⁻⁴)		4.36	4.05	4.36	4.05	4.36	4.05	
Energy spread (10 ⁻⁴) (full current)	dE/E	6.43	7.34	6.43	7.34	6.43	7.34	
CM energy spread (10 ⁻⁴)	dE/E	5.0		5.0		5.0		
Total lifetime	min	4.23	4.48	3.05	3	7.08	7.73	
Total RF Wall Plug Power	MW	16	16.38		12.37		28.83	

SuperB site

The SuperB detector

Detector Overview

The SuperB detector

- Based on the successful BaBar 'prototype'
 - → Similar design
 - Many components reused listed below
- Fused silica bars from the PID detector (the DIRC)
- DIRC and drift chamber support structures
- Barrel calorimeter CsI(TI) crystals and mechanical structure
- Superconducting coil and flux return with some redesign
- Need to cope with new interaction region, high luminosity and background, smaller boost and higher data acquisition rates
 - → Design improvements listed below; refer to reference for additional information
- Small beam pipe technology
- Thin first pixel layer + new 5-layer silicon vertex detector
- New drift chamber with modified gas and cell size
- New photon camera for the DIRC quartz bars
- New forward calorimeter crystals
- Extruded scintillator for flux return
- Options: a forward PID detector and a backward veto calorimeter
- Electronics, trigger, computing, etc.

The SuperB Focusing DIRC (FDIRC)

- Based on the successful BaBar DIRC:
 - Detector of Internally Reflected Cherenkov light
- Cherenkov light produced in quartz bars
- Transported by total internal reflection until array of photomultipliers
- Main PID detector for the SuperB barrel
 - K/π separation up to 3-4 GeV/c
 - Performance close to that of the BaBar DIRC
- Purified Water

 17.25 mm Thickness
 (35.00 mm Width)

 Track
 Trajectory

 Wedge

 PMT Surface

 PMT Surface

 Synthetic Fused Silica

Bars glued end-to-end

BaBar DIRC

schematics

- To cope with high luminosity (10³⁶ cm⁻²s⁻¹) & high background
 - Complete redesign of the photon camera
 - A true 3D imaging using:
 - 25× smaller volume of the photon camera
 - 10× better timing resolution to detect single photons
 - Optical design is based entirely on Fused Silica glass
 - → Avoid water or oil as optical media

PMT + Base

11.000

FDIRC photon camera

• Photon detectors: highly pixilated Hamamatsu H-8500 MaPMTs

When design turns into reality

- Test of a FDIRC full size sector prototype to start next month at SLAC
 - Using the Cosmic Ray Telescope facility

• See <u>J. Va'vra recent talk</u> at 12th Pisa Meeting on Advanced Detectors for details

A forward PID Detector for SuperB

- Goal: to improve charged PID (based on drift chamber dE/dx only) in forward region
- 12 thin (1.5 cm width) fused silica tiles (30° in φ)
- Charged particles produce Cherenkov light
- γ trapped by total internal reflection are detected

- Flight path $\sim 2 \text{ m} \Rightarrow 30 \text{ ps total accuracy}$
- G4-based optimization of the geometry
 - → Main criteria: ↑ photon yield
 ↓ timing spread
- Very fast MCP-PMTs needed (e.g. Hamamatsu SL-10)
 - 168 in total for the FTOF; 4 channel / γ detector
- New ultra-fast electronics: USB WaveCatcher (USBWC) developed jointly by LAL and CEA/Irfu
 - \rightarrow ~10 ps accuracy new chip & board in development

Status of the SuperB project

The SuperB project

- SuperB was rated first in a list of 14 "flagship" projects in the Italian research plan

 → 6 projects / 14 funded, including SuperB
- Plan endorsed by "CIPE"
 - → Italian institution responsible for infrastructure long term plans
- SuperB financial allocation: 256 M€ in six years
 - ~40 M€ allocated in 2010-2011
 - Early allocation of the 2012 budget soon

http://www.cabibbolab.it

- Cabibbo Lab (consortium) created on October 7th 2011
 - INFN, Tor Vergata University, Italian Ministry for Research (→ ERIC later)
 - Management structure being defined
 - → First people being hired now see website for job offers
- Main 2012 milestones
 - Machine costing in progress
 - → To be evaluated by a finance committee appointed by Italian government Final report expected by mid-Fall
 - Lattice completion
 - Detector Technical Design Report

Summary

For more information

- <u>Detector Progress Report</u> [arXiv:1007.4241]
- Physics Progress Report [arXiv:1008.1541]
- Accelerator Progress Report [arXiv:1009.6178]
- The impact of SuperB on flavour physics [arXiv: 1109.5028]
- Cabibbo lab website: http://www.cabibbolab.it
- SuperB website: http://superb.infn.it

Outlook

- SuperB has a great physics program ahead, complementary to the LHC
- The SuperB innovative collider will reach unprecedent luminosities
- We are building a detector which should exceed BaBar performances in spite of the higher data rate and background
- It is intellectually rewarding and stimulating to work on a long-term project from the beginning, having in mind to take it until it reaches its 'super flavour factory mode'
- There are many opportunities to join SuperB in all areas acc., det., comp., phys.
- Machine costing is ongoing
- Key Milestones
 - SuperB approval by Italy in December 2010
 - Site chosen in May 2011
 - Cabibbo lab established in October 2011
- Schedule
 - Construction in 2013-2018
 - First beams end of 2018

BACKUP

Comparing SuperB, LHCb & Belle-2

- Comparison of relative benefits of SuperB (75 ab⁻¹) / Belle-2 (50 ab⁻¹) vs. existing measurements and LHCb (5 fb⁻¹) / LHCb upgrade (50 fb⁻¹)
- The impact of SuperB on flavour physics: arXiv:1109.5028
 - → Document written by the SuperB physics group in consultation with other flavour experiments, in particular LHCb (upgrade) and Belle-2
- Focus on golden modes
 - Theoretical uncertainties under control
 - SuperB measurements/upper limits will be the best with the full dataset
 - Allow to test/constrain/reject some NP models
- These results will be updated in the coming years: physics TDR + physics book
- Benefit from unique features of SuperB
 - Polarization
 - Wide range of running energies
 - Larger dataset

Golden measurements: General

Golden measurements: CKM

Impacts of the Polarization

- SuperB e⁻ beam polarized at ~80%
 → A unique feature of SuperB w.r.t. Belle-2
- The polarization helps suppressing the background in LFV search
- W/o polarization, no sensitivity to
 - the Weinberg mixing angle
 - the τ g-2
 - the τ electric dipole moment

Measurements help selecting/comparing NP models

Digest of the SuperB crab waist scheme

- A superb idea from Pantaleo Raimondi
 - A variant of it is now used by Belle-2 as well: the 'nano-beam scheme'
- Transverse beam size of nanometer scale needed to reach very high luminosity

- To benefit from this, one needs effective σ_z to be very small
- Extremely hard to do by conventionnal techniques
 - → Collide at high Piwinski angle
 - Large crossing angle and long σ_z
- Creates vey large indesirable beam-beam effects
 - → Get rid of them by pre-distorting the beams
- Successfully tested at DAΦNE:
 - Luminosity $\times \sim 3$,
 - → Consistent with expectations

Cabibbo Laboratory structure

• Director General: Roberto Petronzio

• Director for Research: Marcello Giorgi

• Director of Infrastructures: Walter Scandale

• Director of the Accelerator Department: Alessandro Variola

• Most group and area leaders identified

Comparing SuperB, LHCb & Belle-2

- With the exceptions of y_{CP} and $K^*\mu\mu$, there are no planned or existing experiments that will surpass SuperB precision in these modes for at least the next two decades
 - → The best place to measure the other 33 golden modes is SuperB!

Observable/mode	Current	LHCb	Super B	Belle II	LHCb upgrade	theory				
	now	(2017)	(2021)	(2021)	(10 years of	now				
		$5\mathrm{fb}^{-1}$	$75 {\rm ab}^{-1}$	$50 {\rm ab}^{-1}$	running) $50 \mathrm{fb}^{-1}$					
au Decays										
$\tau \to \mu \gamma \ (\times 10^{-9})$	< 44		< 2.4	< 5.0						
$\tau \to e \gamma \ (\times 10^{-9})$	< 33		< 3.0	< 3.7 (est.)						
$\tau \to \ell\ell\ell \ (\times 10^{-10})$	< 150 - 270	$<244\ ^a$	< 2.3 - 8.2	< 10	< 24 b					
$B_{u,d}$ Decays										
$BR(B \to \tau \nu) \ (\times 10^{-4})$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2				
$BR(B \to \mu\nu) \ (\times 10^{-6})$	< 1.0		0.02	0.03		0.47 ± 0.08				
$BR(B \to K^{*+}\nu\overline{\nu}) \ (\times 10^{-6})$	< 80		1.1	2.0		6.8 ± 1.1				
$BR(B \rightarrow K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160		0.7	1.6		3.6 ± 0.5				
$BR(B \to X_s \gamma) \ (\times 10^{-4})$	3.55 ± 0.26		0.11	0.13	0.23	3.15 ± 0.23				
$A_{CP}(B \to X_{(s+d)}\gamma)$	0.060 ± 0.060		0.02	0.02		$\sim 10^{-6}$				
$B \to K^* \mu^+ \mu^-$ (events)	250^{c}	8000	$10-15k^{d}$	7-10k	100,000	-				
$BR(B \to K^* \mu^+ \mu^-) \ (\times 10^{-6})$	1.15 ± 0.16		0.06	0.07		1.19 ± 0.39				
$B \to K^* e^+ e^-$ (events)	165	400	10-15k	7-10k	5,000	-				
$BR(B \to K^* e^+ e^-) \ (\times 10^{-6})$	1.09 ± 0.17		0.05	0.07		1.19 ± 0.39				
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0.27 ± 0.14^{e}	f	0.040	0.03		-0.089 ± 0.020				
$B \to X_s \ell^+ \ell^-$ (events)	280		8,600	7,000		-				
$BR(B \to X_s \ell^+ \ell^-) \ (\times 10^{-6})^g$	3.66 ± 0.77^{h}		0.08	0.10		1.59 ± 0.11				
$S \text{ in } B \to K_S^0 \pi^0 \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1				
$S \text{ in } B \to \eta' K^0$	0.59 ± 0.07		0.01	0.02		± 0.015				
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.15	0.02	0.03	0.03	± 0.02				
		Е	3 Decays	•						
$BR(B_s^0 \to \gamma \gamma) \ (\times 10^{-6})$	< 8.7		0.3	0.2 - 0.3		0.4 - 1.0				
$A_{SL}^{s} \ (\times 10^{-3})$	-7.87 ± 1.96 ⁴	1	4.	5. (est.)		0.02 ± 0.01				
D Decays										
x	$(0.63 \pm 0.20\%$	0.06%	0.02%	0.04%	0.02%	$\sim 10^{-2 \ k}$				
y	$(0.75 \pm 0.12)\%$	0.03%	0.01%	0.03%	0.01%	$\sim 10^{-2}$ (see above).				
y_{CP}	$(1.11 \pm 0.22)\%$	0.02%	0.03%	0.05%	0.01%	$\sim 10^{-2}$ (see above).				
q/p	$(0.91 \pm 0.17)\%$	8.5%	2.7%	3.0%	3%	$\sim 10^{-3}$ (see above).				
arg{q/p} (°)	-10.2 ± 9.2	4.4	1.4	1.4	2.0	$\sim 10^{-3}$ (see above).				
Other processes Decays										
$\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \text{GeV}/c^2$			0.0002	l		clean				
		•	-	-		-				

Comparing SuperB, LHCb & Belle-2

• CKM framework

Observable/mode	Current	LHCb	$\mathrm{Super}B$	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of running)	now
		$5\mathrm{fb}^{-1}$	$75 {\rm ab}^{-1}$	$50\mathrm{ab^{-1}}$	$50 {\rm fb}^{-1}$	
$lpha$ from $u\overline{u}d$	6.1°	5° a	1°	1°	b	1 – 2°
β from $c\bar{c}s$ (S)	0.8° (0.020)	$0.5^{\circ} (0.008)$	0.1° (0.002)	0.3° (0.007)	$0.2^{\circ} (0.003)$	clean
$S \text{ from } B_d \to J/\psi \pi^0$	0.21		0.014	0.021 (est.)		clean
$S \text{ from } B_s \to J/\psi K_S^0$?			?	clean
γ from $B \to DK$	11°	~ 4°	1°	1.5°	0.9°	clean
$ V_{cb} $ (inclusive) %	1.7		0.5%	0.6 (est.)		dominant
$ V_{cb} $ (exclusive) $\%$	2.2		1.0%	1.2 (est.)		dominant
$ V_{ub} $ (inclusive) %	4.4		2.0%	3.0		dominant
$ V_{ub} $ (exclusive) %	7.0		3.0%	5.0		dominant

SuperB as a light source

- It is the first time a machine is developed to suit the needs of two communities:
 - High Energy Physics and Synchrotron light users
- Clear priority to the collider during its lifetime
 - → Finding a design matching both sets of requirements is challenging
- Partnership with the Italian Institute of Technology
- Different solutions being studied
 - Synchrotron lines around the main ring
 - Free-electron laser in the LINAC