V₄/V₂² RATIO AND CONSTITUENT QUARK SCALING IN RELATIVISTIC HEAVY-ION COLLISIONS

E. Zabrodin, G. Eyyubova, L. Bravina

University of Oslo and Moscow State University

OUTLINE

I. Motivation

II. HYDJET++ model (hydro + jets)

III. Model results for the ratio v4/(v2)² at RHIC and LHC

IV. NCQ-scaling at RHIC and LHC

I. $v4/(v2)^2$ ratio

Anisotropic flow

$$\frac{dN}{d\varphi} = \frac{1}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2v_n(p_t) \cos[n(\varphi - \psi_r)]\right)$$

Predictions

N. Borghini, J.-Y. Ollitrault, PLB 642 (2006) 227

 Within the approximation that the particle momentum p and the fluid velocity v are parallel (valid for large momentum p_t and low freeze-out temperature T)

$$dN/d\phi = exp(2\epsilon p_{t} cos(2\phi)/T)$$

Expanding to order ε, the cos(2φ) term is

$$v_2 = \epsilon p_t / T$$

Expanding to order ε², the cos(4φ) term is

$$v_4 = \frac{1}{2} (v_2)^2$$

Hydrodynamics has a universal prediction for $v_4/(v_2)^2$!

Should be independent of equation of state, initial conditions, centrality, rapidity, particle type

Comparison with data

PHENIX data for charged pions

Au-Au collisions at 100+100 GeV

20-60% most central

The ratio is significantly larger than 0.5. Can this be explained by viscous corrections?

Effects of initial profile and viscosity

Initial profile has little effect although eccentricities differ.

results strongly depend on viscosity

Viscosity lowers v4 /(v2)² for a realistic T_f

Eccentricity fluctuations

Depending on where the participant nucleons are located within the nucleus at the time of the collision, the actual shape of the overlap area may vary: the orientation and eccentricity of the ellipse defined by participants fluctuates.

Assuming that v₂ scales like the eccentricity, eccentricity fluctuations translate into v₂ fluctuations

Eccenttricity fluctuation can be computed in MC Glauber model or derived from experiment by comparing different methods for flow calculation.

Why ε fluctuations change v₄/v₂²

Experimentally, no direct measure of v2 and v4

v₂ and v₄ are measured via azimuthal correlations

$$V_2$$
 from $\langle cos(2\phi_1 - 2\phi_2)\rangle = \langle (v_2)^2 \rangle$

$$V_4$$
 from $\langle cos(4\phi_1 - 2\phi_2 - 2\phi_3) \rangle = \langle v_4(v_2)^2 \rangle$

Experimentally measured

$$\frac{v_4}{v_2^2} = \frac{\langle v_4(v_2)^2 \rangle}{\langle (v_2)^2 \rangle^2} = \frac{1}{2} \frac{\langle (v_2)^4 \rangle}{\langle (v_2)^2 \rangle^2} > \frac{1}{2}$$
 fluctuations

Similar results obtained using Event Plane method

II. HYDJET++ = FASTMS + HYDJET

HYDJET++ event generator

I.Lokhtin, L.Malinina, S.Petrushanko, A.Snigirev, I.Arsene, K.Tywoniuk, Comp. Phys. Commun. 180 (2009) 779-799 (arXiv:0809.2708[hep-ph])

- The soft part of HYDJET++ event represents the "thermal" hadronic state.
- ✓ multiplicities are determined assuming thermal equilibrium
- √ hadrons are produced on the hypersurface represented by a parameterization of relativistic hydrodynamics with given freeze-out conditions
- ✓ chemical and kinetic freeze-outs are separated
- √ decays of hadronic resonances are taken into account (360 particles from SHARE data table) with "home-made" decayer

the model reproduces soft hadroproduction features at RHIC (particle spectra, elliptic flow, HBT)

• <u>The hard</u>, multi-partonic part of HYDJET++ event is identical to the hard part of Fortran written HYDJET (PYTHIA6.4xx + PYQUEN1.5). PYQUEN event generator is used for simulation of rescattering, radiative and collisional energy loss of hard partons in expanding quark-gluon plasma created in ultrarelativistic heavy ion AA collisions. HYDJET++ includes nuclear shadowing correction for parton distributions (important at LHC!) Impact-parameter dependent parameterization of *nuclear shadowing (K.Tywoniuk, I.Arsene, L.Bravina, A.Kaidalov and E.Zabrodin, Phys. Lett. B* 657 (2007) 170)

RHIC DATA VS. HYDJET++ MODEL

Au+Au @ 200 AGeV

Elliptic flow

G. Eyyubova et al., PRC 80 (2009) 064907; N.S. Amelin et al., PRC 77 (2008) 014903

V₂ in HYDJET++ for different particles (centrality 30%)

Mass ordering in soft p_T regions then breaks.

Why?

Hydrodynamics gives mass ordering of v2.
The model possesses crossing of baryon and meson branches.

Hydrodynamics

Jet part +quenching

The p_T specta of π , K, p, Λ with HYDJET++ model, $\sqrt{s}=200$ GeV

The slope for the hydro part depends strongly on mass:

 the heavier the particle -- the harder the spectrum

The hydro part dies out earlier for light particles than for heavy ones

LHC DATA VS. HYDJET++ MODEL

Transverse momentum

Pb+Pb @ 2.76 ATeV

Rapidity

Correlation radii (femtoscopy)

Lokhtin et al., arXiv:1204.4820

LHC DATA VS. HYDJET++ MODEL

Pb+Pb @ 2.76 ATeV

Model gives a fair description of various observables at both RHIC and LHC

III. V4/(V2*V2) RATIO

$v_4/v_2^2(p_T)$ at mid-rapidity $|\eta| < 0.8$

Significantly higher than RHIC: experimental method dependent

17

HYDJET++

Effects to be studied: resonance decay and hard part influence

HYDJET++ RESULTS FOR RHIC

Jets increase the ratio

HYDJET++ RESULTS FOR LHC

The same tendency is observed in Pb+Pb at LHC

Still, the ratio is below 1

DECAYS OF RESONANCES PLAY MINOR ROLE

IV. Number-ofconstituent- quark (NCQ) scaling

COMPARISON WITH RHIC DATA

The agreement seems to be good at $\frac{KE_{T}/n_{g}}{< 0.7 \text{ GeV}}$

Number-of-constituent-quark scaling at RHIC

One of the explanations of KE_T/n_q scaling is partonic origin of the elliptic flow.

However, final state effects (such as resonance decays and jets) may also lead to appearance of the scaling

NCQ scaling at LHC

LHC: NCQ scaling will be only approximate (prediction, 2009)

Experimental results (LHC)

ALICE collab., M. Krzewicki et al., JPG 38 (2011) 124047

Semi-sentral collisions

ALICE preliminary, Pb-Pb events at√s_{NN} = 2.76 TeV centrality 10%-20% \bullet π^{\pm} , v_{2} {SP, $|\Delta \eta| > 1$ } \mathbf{K}^{\pm} , \mathbf{v}_{2} {SP, $|\Delta \eta| > 1$ } 0.05 0.8 0.4 0.6 $(m_t-m_0)/n_g (GeV/c^2)$

Semi-peripheral collisions

The NCQ scaling is indeed only approximate (2011)

CONCLUSIONS

The HYDJET++ model allows to investigate flow of hydro and jet parts separately, to look at reconstruction of pure hydro flow and its modification due to jet part.

- > Jets result to increase by 25% 30% of the ratio v4/(v2*v2)
- > Eccentricity fluctuations can increase the ratio by factor 1.5
- > Jets + eccentricity fluctuations are enough to explain RHIC data
- For LHC we can explain 75% of the signal. Other effects are needed
- The predicted violation of the NCQ scaling at LHC is observed

Back-up Slides

Effects of flow fluctuations and partial thermalization

M. Luzum, C. Gombeaud, J.-Y. Ollitrault, Phys.Rev.C81:054910,2010.

Stars: with fluctuations inferred from

the difference between v2{2} and v2{LYZ}.

Dotted line: eccentricity fluctuations from a Monte-Carlo Glauber

III. INFLUENCE OF RESONANCE DECAYS

Influence of resonance decay on v2 value

PbPb collisions, c=30%

The elliptic flow of directly produced particles is smaller than that for all particles.

TABLE I: Yelds of the particles produced directly and with resonance decays, $5.6 \cdot 10^6$ events, c=42%, midrapidity

	π±	$K + \bar{K}$	$p + \bar{p}$	$\Lambda + \bar{\Lambda} + \Sigma + \bar{\Sigma}$	φ
all	860	185	63.8	42.3	6.55
direct	169	81.4	18.6	14.2	6.5
direct %	20 %	44 %	30 %	39 %	99 %

Influence of resonance decays for different type of particles at RHIC

Pions and kaons: the resulting flow is weaker at low-pt and larger at high-pt Baryons: the resulting flow is stronger than the flow of direct particles

Influence of resonance decays for different type of particles at LHC

Pions: the resulting flow is weaker at low-pt and larger at high-pt

Kaons: both flows almost coincide

Baryons: the resulting flow is stronger than the flow of direct particles

TRANSVERSE MOMENTUM OF SECONDARY PARTICLES

The secondary pion spectrum is much softer than proton spectrum

ELLIPTIC FLOW OF DIRECT AND SECONDARY PARTICLES AT RHIC

The heavier resonances have larger v_2 at high transverse momenta The decay kinematics keeps this high v_2 for products of resonance decays

ELLIPTIC FLOW OF DIRECT AND SECONDARY PARTICLES AT LHC

At low transverse momenta: pions from baryon resonances enhance the flow; pions from meson resonances reduce it

V. PARAMETERS OF THE MODEL

Model parameters.

- 1. Thermodynamic parameters at chemical freeze-out: Tch , { | Us, | Us, | Uq}
- 2. If thermal freeze-out is considered: T_{th} , $\mu \pi$ -normalisation constant
- 3. Volume parameters: \mathbf{T} , $\Delta \mathbf{T}$, \mathbf{R}
- 1. pmax -maximal transverse flow rapidity for Bjorken-like parametrization 5. mmax -maximal space-time longitudinal rapidity which determines the rapidity interval [- η_{max} , η_{max}] in the collision center-of-mass system.
- 6. Impact parameter range: minimal bmin and maximal bmax impact parameters
- 7. Flow anisotropy parameters $\delta(b)$, $\epsilon(b)$

PYTHYA+PYQUEN obligatory parameters

- 9. Beam and target nuclear atomic weight A
- 10. —c.m.s. energy per nucleon pair (PYTHIA initialization at given energy)
 11. **ptmin** minimal pt of parton-parton scattering in PYTHIA event (ckin(3) in /pysubs/)
- 12. **nhsel** flag to include jet production in hydro-type event:
- 0 jet production off (pure FASTMC event),
- 1 jet production on, jet quenching off (FASTMC+njet*PYTHIA events),
- 2 jet production & jet quenching on (FASTMC+njet*PYQUEN events),
- 3 jet production on, jet quenching off, FASTMC off (njet*PYTHIA events),
- 4 jet production & jet guenching on, FASTMC off (njet*PYQUEN events);
- 13. **ishad** flag to switch on/off nuclear shadowing

Parameters of energy loss model in PYQUEN

(default, but can be changed from the default values by the user)

- 1. To initial temparature of quark-gluon plasma for central Pb+Pb collisions at mid-rapidity (initial temperature for other centralities and atomic numbers will be calculated automatically) at LHC: T0=1 GeV, at RHIC(200 AGeV) T0=0.300 GeV
- 2. tau0 proper time of quark-gluon plasma formation at LHC: tau0=0.1 fm/c, at RHIC(200 AGeV) tau0=0.4 fm/c
- 3. nf number of active quark flavours in quark-gluon plasma (nf=0, 1, 2 or 3) at LHC: nf=0, at RHIC(200 AGeV) nf=2
- 4. ienglu flag to fix type of medium-induced partonic energy loss (ienglu=0 - radiative and collisional loss, ienglu=1 - radiative loss only, ienglu=2 - collisional loss only, default value is ienglu=0); ianglu - flag to fix type of angular distribution of emitted gluons (ianglu=0 - small-angular, ianglu=1 - wide-angular, ianglu=2 - collinear, default value is ianglu-0). ienglu=0

Methods for v₂ calculation

(1) Event plane method

Two particle correlation method $v_2\{2\} = \sqrt{\langle \cos 2(\varphi_i - \varphi_j) \rangle}$

(3) Lee-Yang zero method
$$G(ir) = \langle e^{irQ} \rangle, Q = \sum \cos(2\varphi)$$

Integral v₂ is connected with the firs minimum r₀ of the Integral v_2 :
module of the G(ir): $v_2 = \frac{J_0}{Nr_0}$

Differential flow is calculated by the formula: $\frac{v_2(p_T)}{Nv_2} = \text{Re}\left(\frac{\left\langle\cos(2\varphi)e^{ir_0Q}\right\rangle}{\left\langle Qe^{ir_0Q}\right\rangle}\right)$

RECONSTRUCTION OF INTEGRAL VALUE OF V2 BY THE METHODS

The better reconstruction is achived in midcentral collision for the methods, while Lee-Yang zero method tends to reconstruct true value at more central and more periferal collision.

Comparison of Event Plane and Lee-Yang zeroes methods (c=30%)

Event Plane method overestimates v_2 at high p_t due to non-flow correlation (mostly because of jets).

p_T, GeV/c