Charm production at LHC: an overview

Giuseppe E Bruno Università di Bari and INFN – Italy

Outline:

- The actual title of my talk is: "*HF* production at LHC: an experimental overview"
- open heavy flavour / hidden heavy flavour
 a glance to pp, focus on Pb-Pb

LHC is the place to study HF

□ Expected in 1 Pb-Pb collision at $\sqrt{s_{NN}}=2.76$ TeV: $\approx 60 \text{ cc}$ $\approx 2 \text{ bb}$

(MNR, shadowing: EKS98, EPS08. Factor 2 uncertainty)

Giuseppe E. Bruno

The LHC experiments

- complementary capabilities:
 - high pt, high rate, jets: the realm of CMS and ATLAS
 - low pt coverage, low material budget, excellent PID: ALICE
 - LHCb is *designed* for HF studies, but has not a heavy ion program

pp: the baseline

- good pp 'baseline' is crucial
 - MC tuning

- where & how much to trust QCD calculations
- where & how much to trust detector & analysis
- comparison to AA
- At SPS (and initially also at RHIC) experiments have suffered for low quality pp data
- □ LHC: more pp at the *correct* energy
 - 'R_{AA}' error has large contribution from pp statistics months of AA, only days of pp@2.76TeV

pp at 7 TeV: hidden HF

ICFP 2012

Giuseppe E. Bruno

pp at 7 TeV: hidden HF

\Box Upsilon and χ_b

pp at 7 TeV: open HF

pp at 7 TeV: open HF

pp at 7 TeV: open HF

open beauty, exclusive decays

pp at 7 TeV: new observables

Theoretical description of HF production in pp at LHC: executive summary

Open HF

- good agreement between pQCD based calculations and data
 - main theoretical uncertainties from factorization and renormalization scales

Quarkonia

NRQCD with CSM and COM (including ³P_j^[8] channels) does a good job in describing present observables:

d²N/dydpt and polarization of J/ ψ , d²N/dydpt of ψ ', Upsilon family and χ_c

no firm conclusions on double charm production and multiplicity dependence

Theoretical description of HF production in pp at LHC

e.g., beauty vs. FONLL

Expt	Observable $(p_T \text{ in GeV})$	σ^{\exp}	$\sigma^{\rm FONLL}$	Comments
1: LHCb [56]	$\sigma(H_b, 2 \le \eta \le 6)$	$75.3\pm11.4~\mu{\rm b}$	$70.8 \stackrel{+33.3}{_{-24.4}} \mu \mathrm{b}$	average $b + \bar{b}$
2: LHCb [57]	$\sigma(B^{\pm}, p_T < 40, 2 < y < 4.5)$	$41.4\pm3.4~\mu{\rm b}$	$40.1 \stackrel{+19.0}{_{-14.5}} \mu \mathrm{b}$	$f(b \rightarrow B^-) = 0.403$
3: CMS [55]	$\sigma(B^0, p_T^B > 5, y^B < 2.2)$	$33.2 \pm 4.3 \ \mu \mathrm{b}$	$25.5 \stackrel{+10.5}{_{-7.1}} \mu \mathrm{b}$	$f(b \to B^0) = 0.403$
4: CMS [54]	$\sigma(B^+, p_T^B > 5, y^B < 2.4)$	$28.1\pm4.4~\mu\mathrm{b}$	$27.2 \stackrel{+11.2}{_{-7.5}} \mu \mathrm{b}$	$f(b \rightarrow B^-) = 0.403$
5: CMS [58]	$\sigma(B_s^0, 8 < p_T^B < 50, y^B < 2.4)$	$6.9\pm0.8~\mathrm{nb}$	$4.5 {+2.3 \atop -1.9}$ nb	$f(b \to B_s^0) = 0.11$
	$\times \mathrm{BR}(B^0_s \to J/\psi \phi)$		(includes BR	$BR(B^0_s \to J/\psi \phi) =$
			uncertainty)	$(1.4 \pm 0.5) \times 10^{-3}$
6: LHCb [64]	$\sigma(H_b \to J/\psi, p_T^{\psi} < 14, 2 < y_{\psi} < 4.5)$	$1.14\pm0.16~\mu{\rm b}$	$1.16 \stackrel{+0.55}{_{-0.42}} \mu \mathrm{b}$	$\mathrm{BR}(b \to J\!/\!\psi) = 0.0116$
7: ALICE [66]	$\sigma(H_b \to J/\psi, p_T^{\psi} > 1.3, y_{\psi} < 0.9)$	$1.26\pm0.16~\mu{\rm b}$	$1.33 \stackrel{+0.59}{_{-0.48}} \mu \mathrm{b}$	$BR(b \rightarrow J\!/\!\psi) = 0.0116$
8: CMS [73]	$\sigma(H_b \to \mu, \ p_T^{\mu} > 6, \ y^{\mu} < 2.1)$	$1.32\pm0.34~\mu\mathrm{b}$	$0.855 \stackrel{+0.28}{_{-0.19}} \mu \mathrm{b}$	$BR(b \to \ell) = 0.0108$
				$BR(b \to c \to \ell) = 0.096$

the baseline: pp at 2.76 TeV

ICFP 2012

Giuseppe E. Bruno

Pb-Pb collisions

Questions:

- How do c and b quarks loose energy ?
 - **D** naïve picture: $\Delta E(g) < \Delta E(c) < \Delta E(b)$?
- do c and b thermalize ?
- sequential melting of quarkonia ?
 - charmonium: is there a regeneration mechanism at work?

Observables:

- R_{AA} of open Heavy Flavour
 - \square R_{AA}(D)/R_{AA}(π) > 1: colour charge and mass effect ?
 - \square R_{AA}(b)/R_{AA}(c) > 1: mass effect ?
- R_{AA} of quarkonia
- V₂ of open/hidden HF

Additional question: pA measurement?

Charm & beauty as probes

calculable in pQCD; calibration measurement from pp

→rather solid ground

Caveat: modification of initial state from pp to AA

shadowing ~ 20 %

saturation?

pA reference fundamental!

□ produced essentially in initial impact →probes of high density phase

no extra production at hadronization → probes of fragmentation

e.g.: independent string fragmentation vs recombination

Quarkonium production in Pb-Pb collisions

R_{CP} of HF leptons

less suppressed than charged hadrons

No significant p_t dependence

better: R_{AA} of HF leptons

Track selection

- Match track with segments in the trigger chambers \rightarrow reject punch-through hadrons
- Distance of Closest Approach to primary cut rejects tracks from beam-gas interactions
- **D** Background subtraction: π , K decays
 - pp: using as input MC simulations
 - PbPb: using ALICE data at mid rapidity

Strong suppression in central collisions No significant p_t dependence

next talk by S. Lapointe

more directly: exclusive meson or semi-inclusive B channels

□ B hadrons (CMS) ■ $B \rightarrow J/\psi + X$

 R_{AA} of open HF

next talk by S. Lapointe

charm vs beauty: no evidence of mass effects

14 16

p (GeV/c)

18

R_{AA} of open HF

 $B \rightarrow J/\psi + X$

Charm vs beauty: no evidence of mass effects HF vs pion: hint of a hierarchy

model discrimination: describe both R_{AA} and v₂

Quarkonia: J/ψ

J/Ψ suppression is *finally* different @ LHC
 ■ unless CNM plays very dirty, unexpected tricks
 □ much more in the talk by C. Blume

ICFP 2012

Giuseppe E. Bruno

Quarkonia: J/ψ

- Indication for v₂ > 0 in the range 2 < p_t < 4 GeV/c
 significance ~ 2.2σ deviation from 0 for ALICE
 - the presence of flow would fit well in the reco. picture
- J/Ψ suppression is *finally* different @ LHC
 unless CNM plays very dirty, unexpected tricks
 much more in the talk by C. Blume

Quarkonia: Υ

□ The Upsilon family

Sequential suppression can be seen already in inv. mass distributions

ICFP 2012

Quarkonia

- ☐ first results on Y(2S) R_{AA}
- □ clear suppression of Y(2S)
- □ Y(1S) suppression consistent with excited state suppression (~50% feed-down)

□ RHIC vs. LHC

- STAR $R_{AA}(1+2+3) =$ 0.56^{+0.22}-0.26
- CMS RAA(1+2+3) = 0.32

consistent within 1σ

CMS ψ(2S)

CMS-HIN-12-007

For p_T>6.5 GeV/c and |y|<1.6: ψ(2S) are more suppressed than J/ψ

For p_T>3 GeV/c and 1.6<|y|<2.4: indication of ψ(2S) being less suppressed than J/ψ

better pp reference needed

extrapolate 7 TeV data?

Summary: HF production at LHC

- HF in pp:
 - excellent measurements, theory does a good jobs
 - data at "reference energy" have to be improved
- Open HF in Pb-Pb
 - "indications" of:
 - □ $R_{AA}(D)/R_{AA}(\pi) > 1 \rightarrow$ colour charge and mass effect ?
 - $\square R_{AA}(b)/R_{AA}(c) > 1 ? \rightarrow mass effect ?????$
 - "wish list" (besides smaller errors):
 - □ lower $p_t =>$ stronger *m* effect
 - \Box dN_{HF}/dy in AA => J/ Ψ normalisation, thermal production?
 - □ HF baryons ? => Λ_c/D
 - pPb => shadowing corrections at small pt
- Quarkonia in Pb-Pb
 - J/ψ suppression
 - it is definitely different @ LHC
 - overall picture favors recombination scheme
 - Upsilon suppression: beautiful data ... and make sense !
 - $\psi' \rightarrow$ give theorists time to digest
- □ HF in pPb
 - check cold nuclear matter effect, this year

Talk by

C. Kuhn

Spares

CNM effects: always tricky

🗖 e.g. Phoenix

one would expect nuclear absorption for Y << than for J/Ψ

but large error

- Expected shadowing for D meson at LHC
 - sizeable at low p_t
 - a measurement is always better than even the best guess

Pb-Pb 2011 run statistics

□ Collected events:

132.4M physics events7.7M calibration events

Physics	L2a Counts
MinBias	8798.8 k events
Central	29985.4 k events
SemiCentral	35020.4 k events
EMCAL Jet	10765.1 k events
EMCAL Gamma	7928.3 k events
Barrel UPC (SPD)	7880.7k events
Barrel UPC (EMCAL)	18.4 k events
PHOS	948.6 k events
MUON Single Low	6947.0 k events
MUON Single High	22978.3 k events
MUON UPC	3368.8 k events
DiMUON unlike	21634.2 k events

The Phase Diagram of QCD Matter

Charm & Beauty as probes

calculable in pQCD; calibration measurement from pp

→rather solid ground

Caveat: modification of initial state from pp to AA

■ shadowing (for pt <5-7 GeV/c)

saturation?

□pA reference fundamental!

produced essentially in initial impact probes of high density phase

no extra production at hadronization → probes of fragmentation

De.g.: independent string fragmentation vs recombination

Probing the medium

quenching vs colour charge

- heavy flavour from quark ($C_R = 4/3$) jets
- light flavour from (p_T-dep) mix of quark and gluon (C_R = 3) jets

quenching vs mass

- heavy flavour predicted to suffer less energy loss
 - □gluonstrahlung
 - Collisional loss

beauty vs charm

Quarkonia at LHC

Jet quenching at RHIC

- high p_T hadrons strongly suppressed in central Au+Au
- nuclear modification factor

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dy dp_T}{\langle N_{coll} \rangle d^2 N^{pp} / dy dp_T}$$

- final state effect due to strong interaction
 photons not suppressed
- parton energy loss in dense medium

Parton energy loss

partons produced in hard (high Q²) scattering

- traverse matter and loose energy
 - gluon radiation and collisions
 - amount of energy loss characteristic for medium density
 - non-linear effects from interference
 - Landau-Pomeranchuk-Migdal

 $\Delta E \propto \alpha_{\rm s} \widehat{q} L^2$

with transport coefficient: $\hat{q} = \langle p_{\rm T}^2 \rangle / \lambda \approx \rho_{\rm gluons}$

finally fragment into jets of hadrons measured effect: jet quenching

R_{AA} of D mesons vs. theory

$R_{AA}(D) / R_{AAa}(\pi) > 1$?

pp vs Pb-Pb statistics at 2.76 TeV per nucleon pair

Comparison to RHIC

Hard Probes 2012, Calgiari, 27 May - 1 June 2011

14

Giuseppe E. Bruno

Prompt J/ψ: CNM Effects

- Prompt J/ψ
 - p_T > 6.5 GeV/c:
 - in 0–10% centrality: suppressed by factor 5
 - in 50–100%:
 suppressed by factor ~1.6
- Cold nuclear matter effects
 - work in progress to estimate (anti)shadowing contributions
 - relatively small at high p_T

CMS ψ(2S)

CMS-HIN-12-007

Measured yield double ratio $(N_{\psi(2S)}/N_{J/\psi})_{PbPb}/(N_{\psi(2S)}/N_{J/\psi})_{pp}$ as a function of centrality. The p_{T} and rapidity bins are $6.5 < p_T < 30$ GeV/c and |y| < 1.6(left), and $3.0 < p_T < 30 \setminus GeVc$ and 1.6 < |y| < 2.4 (right). The error bars and boxes stand for the PbPb statistical and systematic uncertainties, respectively. The shaded band is the uncertainty on the pp measurement, common to all double-ratio points.

double charm production

Table 1: Estimates for the production cross-sections of the $J/\psi C$ and CC modes in the LHCb fiducial range given by the leading order $gg \rightarrow J/\psi c\bar{c}$ matrix element, σ_{gg} [13,14,17], the double parton scattering approach, σ_{DPS} and the intrinsic charm model, σ_{IC} .

Mode	$\sigma_{\rm gg}$		$\sigma_{ m DPS}$	$\sigma_{ m IC}$
	[13, 14]	[17]		
		[nł	b]	
$J/\psi D^0$	10 ± 6	7.4 ± 3.7	146 ± 39	220
$J/\psi D^+$	5 ± 3	2.6 ± 1.3	60 ± 17	100
$J/\psi D_s^+$	1.0 ± 0.8	1.5 ± 0.7	24 ± 7	30
$J/\psi \Lambda_c^+$	0.8 ± 0.5	0.9 ± 0.5	56 ± 22	
	^	1 [μ]	b]	
$D^0 D^0$			$2.0 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5 \hspace{0.2cm}$	1.5
D^0D^+			$1.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.4 \hspace{0.2cm}$	1.4
$\rm D^0 D_s^+$		/	0.65 ± 0.15	0.4
${ m D}^0 \Lambda_{ m c}^+$			1.5 ± 0.5	1.4
D^+D^+			0.34 ± 0.09	0.3
$D^+D_s^+$			0.27 ± 0.07	0.2
$\rm D^+\Lambda_c^+$			0.64 ± 0.23	
	V			

These LO α_s^4 pQCD results have a factor of two uncertainties due to selection of the scale for α_s .

double charm production

$$\sigma_{\text{DPS}}\left(\text{C}_{1}\text{C}_{2}\right) = \begin{cases} \frac{1}{2} \frac{\sigma\left(\text{C}_{1}\right) \times \sigma\left(\text{C}_{1}\right)}{\sigma_{\text{eff}}^{\text{DPS}}}, \text{ for } \text{C}_{1} = \text{C}_{2} \\ \frac{\sigma\left(\text{C}_{1}\right) \times \sigma\left(\text{C}_{2}\right)}{\sigma_{\text{eff}}^{\text{DPS}}}, \text{ for } \text{C}_{1} \neq \text{C}_{2}. \end{cases}$$

effective cross-section measured in multi-jet events at the Tevatron: $\sigma^{DPS}_{eff}=14.5 \pm 1.7^{+1.7}_{-2.3}$ mb

$$\sigma_{\mathsf{DPS}}$$