

Search for the Standard Model Higgs boson at CMS in the 4-lepton channel

ICFP 2012

Marco Meneghelli

for the CMS collaboration

Phys. Rev. Lett. 108, 111804 (2012)

Outline

- The 4-lepton channel
- Data and Montecarlo
- Event selection
- Lepton identification
- Background evaluation and control
- Systematics
- Results (Final distributions and statistical analysis)
- Ref. Phys. Rev. Lett. 108, 111804 (2012)

The 4-lepton channel

- Decay channel: $H \to ZZ^* \to |_1^+|_1^-|_2^+|_2^- |_i = \mu, e$
- Experimental signature:

4 isolated leptons coming from the Primary Interaction Vertex

The 4-lepton channel

- Relatively small signal cross section: 0.5 7 fb
- Very clean signature and a resonance peak in the 4-lepton mass distribution with excellent resolution

The 4-lepton channel

- Ratio signal:background almost 1:1
 - Irreducible background: the ZZ continuum yield: ~14 fb
 - Reducible backgrounds: Z+jets, tt, WZ, QCD yield: ~1.1 fb
- Good sensitivity for a wide mass range 110 < m_H < 600 GeV/c²

Experimental Data

Available statistics: 4.7 fb⁻¹ collected during 2010 and 2011

Montecarlo samples

Signal:

$$-gg\rightarrow H\rightarrow ZZ\rightarrow 4I [m_H = 100 - 600 \text{ GeV/c}^2] \text{ powheg}$$

Backgrounds:

– qq→ZZ→4I	powhee
99 7 22 7 11	קטוויי טיק

$$-gg \rightarrow ZZ \rightarrow 4I$$
 gg2zz

$$- tt \rightarrow 2l2nu2b$$
 powheg

Event selection

Trigger

identification of same-flavor lepton pairs passing thresholds in p_t

Skim

2 reconstructed leptons above a given p_t, with an invariant mass > 40 GeV/c²

Pre-selection

- identification of a first, on shell, Z boson (a opposite-sign, same-flavor lepton pair with mass close to 91 GeV/c^2)
- a third lepton passing quality cuts
- a fourth lepton passing quality cuts, with same-flavor opposite-sign wrt the third
- choice of the best Z_2 as the opposite-sign same-flavor lepton pair with the highest p_t

Selection

- Cut on lepton isolation
- Cut on significance of impact parameter
- Cuts on kinematics

Lepton identification - Muons

- Algorithm: Global muon reconstruction
 - fit hits in the muon system and in the silicon central tracker
 - four-momentum is derived from the inner track
- ID cuts:
 - pt > 5 GeV/c , | eta | < 2.4
 - tracker hits > 10
- Efficiencies are evaluated with Tag&Probe technique at the Z and J/ψ peaks
 - this technique exploits the known presence of two leptons in a resonance to computed almost-unbiased efficiencies

Lepton identification - Electrons

- Algorithm: Gaussian-Sum-Filter (gsf) electron
 - combines ECAL and tracker information, matching (super) clusters of energy in the ECAL with hits in the inner tracker
 - four momentum is given by the combination of ECAL and tracker info
- ID cuts:
 - pt > 7 GeV/c , | eta | < 2.5</p>
 - tight electron selection to enhance purity → best s/b
 - conversions rejected cutting on expected missing inner hits
- Efficiencies are evaluated with Tag&Probe technique at the Z peak

Lepton isolation

- The leptons used in the analysis are required to be isolated, i.e. non contained in a
 jet, in order to discriminate against QCD processes
- Lepton isolation is evaluated looking at the p_t of tracks or energy deposits in a geometrical cone around the track of each lepton:
 - lepton <u>track isolation</u> Iso_{track}: sum of p_t of tracks within a $\Delta R < 0.3$ cone
 - lepton ECAL/HCAL isolation Iso_{ECAL} Iso_{HCAL}: sum of ET from energy deposits within a $\Delta R < 0.3$ cone
 - a small "veto" cone around the lepton is excluded from the computation
 - Iso_{ECAL} Iso_{HCAL} are corrected for the effect of pile-up increasing
 - normalization to p_t → Final variable $R_{iso} = (Iso_{track} + Iso_{ECAL} + Iso_{HCAL})/p_t$
- Final cut is on the sum $R_{iso}^{i} + R_{iso}^{j}$ (< 0.35) over all the lepton couples ij

Primary leptons choice & Kinematics

- All the leptons are required to come from a common primary vertex
- This allows to discriminate against reducible background (Zbb,Zcc,tt) by rejecting leptons coming from secondary vertices (b-jets)

• Cut on the significance of impact parameter (the distance of closest approach of lepton track with respect to the primary interaction vertex, normalized to its

uncertainty): $|SIP_{3D}| = |IP_{3D}/s_{IP}| < 4$

 Kinematical cuts are posed to discriminate against QCD resonances:

- 50 < m_{z1} < 120 GeV/ c^2
- 12 < m_{z2} < 120 GeV/ c^2
- $m_{41} > 100 \text{ GeV/c}^2$

Event selection

- A comparison done at the early stage of selection, with relaxed cuts on flavor/sign, allow to see the difference between signal-like events and reducible background ones
- Cuts on isolation and significance of IP are crucial to discriminate signal against reducible background

Background control: irreducible

ZZ continuum yield is directly estimated from MC

$$\left(\sigma_{NLO}^{q\bar{q}\to ZZ\to 4l}\times\varepsilon_{MC}^{q\bar{q}\to ZZ\to 4l}+\sigma_{LO}^{gg\to ZZ\to 4l}\times\varepsilon_{MC}^{gg\to ZZ\to 4l}\right)\times L$$

 A data-driven cross check has been done by normalizing to the measured Z rate. With this procedure the uncertainty on luminosity is canceled out by the ratio:

$$\frac{\sigma_{\scriptscriptstyle NLO}^{q\bar{q}\to ZZ\to 4l}+\sigma_{\scriptscriptstyle LO}^{gg\to ZZ\to 4l}}{\sigma_{\scriptscriptstyle NNLO}^{q\bar{q}\to Z\to 2l}}\times \frac{\varepsilon_{\scriptscriptstyle MC}^{ZZ\to 4l}}{\varepsilon_{\scriptscriptstyle MC}^{Z\to 2l}}\times N_{\scriptscriptstyle data}^{Z\to ll}$$

The number of expected events, for the available integrated luminosity, is:

	Channel	Normalization to Z Rate	Direct measurement from MC
$q\overline{q}$	$N^{ZZ o 4\mu}$	18.2 \pm 1.6	18.0 \pm 1.5
	$N^{ZZ o 4e}$	11.7 \pm 1.1	11.5 \pm 1.0
	N ^{ZZ→2µ2e}	29.0 \pm 2.5	28.4 \pm 2.4
88	$N^{ZZ o 4\mu}$	1.12 \pm 0.34	1. 11 \pm 0.34
	$N^{ZZ o 4e}$	0.79 ± 0.24	$\mathrm{0.77}\pm\mathrm{0.24}$
	N ^{ZZ→2µ2e}	1.8 \pm 0.58	1.85 ± 0.56

Background control: reducible

- A signal-free control region CR is defined as $Z_1 + 2$ loose SS-SF leptons (Same Sign Same Flavor)
- Every event in the CR is weighted with the probability for it to pass the tight selection, using a single-lepton fake rate. The fake rate is estimated from data, using a Z+1 lepton sample
- More direct methods are limited by the statistics available in Z+jets MC sample
- A closure test on MCs has been done, resulting in a fair agreement with expectations
- The number of expected events, for the available integrated luminosity, is:

Channel	Events expected (4.7 /fb)	
4e	1.67 ± 0.05 ± 0.5	
4μ	1.13 ± 0.09 ± 0.46	
2e2μ	2.71 ± 0.08 ± 0.88	

Systematics

• Theoretical uncertainties on Higgs production and ZZ cross sections are considered. They come from PDF systematic errors and from uncertainties on QCD scale and renormalization factors μ_R and μ_F

Source	Uncertainty on XS _H	Uncertainty on XS _{zz}
gg partonic luminosity	8 %	10 %
qq partonic luminosity	3 – 5 %	5 %
QCD scale	5 – 12 %	2 – 40 %
Branching Ratio	2 %	

- Uncertainty on integrated luminosity is 4.5 %
- A 1.5 % uncertainty is assigned to Trigger
- Tag&Probe techniques, applied both on data and MC, allow to compute data-to-simulation scale factors, to be used as systematic uncertainties:
 - Lepton reconstruction/identification: 0.5 3.8 %
 - Lepton isolation: 1 2 %

Fit to mass distributions

- Signal distribution is fitted with a Breit-Wigner function convoluted with a Crystall-ball function
- Irreducible ZZ continuum is fitted with an "empirical" p.d.f.
- Reducible background is modeled with a Landau function

Results – Mass distribution

- Final mass distribution for events passing the full selection
- Expected distributions for background and (some) signals are shown

4mu+4e+2e2mu

Observed events: 72

Expected events: 67.1 ± 6.0

Baseline	4e	4μ	2e2µ
ZZ	12.27 ± 1.16	19.11 ± 1.75	30.25 ± 2.78
Z+X	1.67 ± 0.55	1.13 ± 0.55	2.71 ± 0.96
All background	13.94 ± 1.28	20.24 ± 1.83	32.96 ± 2.94
$m_{\rm H}=120~{\rm GeV}/c^2$	0.25	0.62	0.68
$m_{\rm H}=140~{ m GeV}/c^2$	1.32	2.48	3.37
$m_{\rm H}=350~{\rm GeV}/c^2$	1.95	2.61	4.64
Observed	12	23	37

Results – Low mass region

- Final mass distribution for events passing the full selection
 - $m_{4L} < 160 \text{ GeV/c}^2$
- Expected distributions for background and (some) signals are shown

4mu+4e+2e2mu

Observed events: 13

Expected events: 9.5 ± 1.3

Final state: 4e 4µ 2e2µ

Obs. events: 3 5 5

Exp. events: 1.7 3.3 4.5

Results – Local p-values

• To quantify an excess the p-value of q_0 , the (unbinned) profile likelihood discriminator is used:

$$q_0 = -2 \ln rac{\mathcal{L}(\mathrm{data}|0,\hat{ heta}_0)}{\mathcal{L}(\mathrm{data}|\hat{\mu},\hat{ heta})} \qquad \hat{\mu} \geq 0$$

- $-\mu$ is the "cross section modifier" XS/XS_{SM}
- θ are the nuisance parameters, used to model systematics
- Local excesses are observed, up to \sim 3 sigma for m_H = 119 GeV /c² compatible with background only hypothesis

Results – Limits and exclusion

- Limits on μ are computed with the (frequentist) CLs method
 - this method uses the profile likelihood ratio q_{μ} as a discriminant between signal +background (SB) and background only (B) hypotheses, and it is designed to exclude the signal presence only if the analysis is able to distinguish it from the background
 - the signal presence is excluded at the 95% CL limit on signal cross-section goes below
 Standard Model predicted-value
- Within the 4-lepton channel the Standard Model Higgs boson is excluded at the 95% CL in the mass range:

[134-158], [180-305], [340-460] GeV/c²

Conclusions

- The results for the SM Higgs search at CMS in the 4-lepton channel with 4.7 fb⁻¹ have been presented
- The channel is sensitive to the Higgs search over a wide mass range
- 72 events have been observed, while 67.1 ± 6.0 were expected from SM background
- The results are consistent with the background-only hypothesis
- A local excess below 3-sigma is observed for m_H ~ 119 GeV/c²
- The SM Higgs boson is excluded at the 95% CL in the mass range:

[134-158], [180-305], [340-460] GeV/c²

• With data expected by the end of 2012 (20 fb⁻¹) a local excess up to 4-sigma is expected in the 4-lepton channel for a ~120 GeV/c² Higgs mass, while the 5-sigma discovery will be accessible by the combination of the various analysis of CMS

Backup

Pile-up correction

- Isolation variables are the most sensitive to pile-up. In particular ECAL/HCAL
- The correction uses the median of Jet energy deposit in the event: ρ
- The effective cone-areas A_i are computed from data, both in barrel and endcap region

$$\sum Iso_{corrected} = \sum Iso - \rho \cdot A$$

Ev by Ev mass errors

- An uncertainty on each m4L entry can be assigned by propagating errors on track fit
- This allows a more accurate description of the oscillations in the p-value

