The Old New Frontier: Studying the CERN SPS Energy Range with NA61/SHINE

Marek Szuba for the NA61/SHINE Collaboration

Karlsruhe Institute of Technology

2012.06.12 / ICFP 2012

- Reference Measurements for ν Experiments
- Reference Measurements for Cosmic-Ray Experiments
- High p_T , p+p and p+A
- Critical Point and the Onset of Deconfinement

The NA61/SHINE Experiment

- A fixed-target experiment at the CERN SPS
- One of the largest non-LHC experiments at CERN
- Successor of NA49
- Taking data since 2007
- h+N, h+A and A+A collisions over a wide energy range
- Physics goals:
 - search for the **critical point** and study of the **onset of deconfinement** of QCD matter
 - reference hadroproduction measurements for neutrino and cosmic-ray experiments
 - study of high- p_T phenomena in p+p and p+A collisions

Detector Set-up

Also: LMPD, A and Z detectors, software upgrade, ...

Our Main Assets

We can meet such varied physics goals thanks to:

- large acceptance: \approx 50 %
- high momentum resolution: $\sigma(p)/p^2 \approx 10^{-4} \; (\text{GeV}/c)^{-1}$
- good particle identification:
 - $\sigma(dE/dx)/ < dE/dx > \approx 0.04$
 - $\sigma(t_{flight}^{ToF-L/R}) \approx 60 \ ps$
 - $\sigma(t_{flight}^{ToF-F}) \approx 120 \ ps$
 - $\sigma(m_{inv}) \approx 5 \ MeV$
- \bullet high detector efficiency: over 95 %
- high data rate: 70 events/s

Data Taking

2007 pilot run

- 850 thousand events recorded
- neutrino physics:
 - p+C at 31 GeV/c
 - p+(T2K replica target) at 31 GeV/c

2009 run

- 40 million events recorded
- neutrino physics:
 - p+C at 31 GeV/c
 - p+(T2K replica target) at 31 GeV/c
- cosmic-ray physics:
 - π^-+C at 158 GeV/c
 - $\pi^-+{\rm C}$ at 350 GeV/c
- critical point and the onset of deconfinement:
 - p+p at 20 GeV/c
 - p+p at 31 GeV/c
 - p+p at 40 GeV/c
 - p+p at 80 GeV/c
 - p+p at 158 GeV/c

Marek Szuba, 2012.06.12

Data Taking

2010 run

- 75 million events recorded
- neutrino physics:
 - p+(T2K replica target) at 31 GeV/c
- high p_T:
 - p+p at 158 GeV/c

2011 run

- 27 million events recorded
- high p_T :
 - $\bullet~p{+}p$ at 158 GeV/c
- critical point and the onset of deconfinement:
 - p+p at 13 GeV/c
 - Be+Be at 40A GeV/c
 - Be+Be at 75A GeV/c
 - Be+Be at 150A GeV/c

Data Taking

2012 run (plans)

- neutrino physics:
 - p+C at 120 GeV/c
- high p_T:
 - p+Pb at 158 GeV/c
- cosmic-ray physics:
 - $\pi + C$ at 158 GeV/c
- critical point and the onset of deconfinement:
 - Be+Be at 13A GeV/c
 - Be+Be at 20A GeV/c
 - Be+Be at 30A GeV/c

2 Physics Goals

• Reference Measurements for ν Experiments

- Reference Measurements for Cosmic-Ray Experiments
- High p_T , p+p and p+A
- Critical Point and the Onset of Deconfinement

Neutrino Oscillation

- Predicted by Pontecorvo in 1957
 - each ν is a mixture of three definite states
 - different masses \Rightarrow different propagation
 - periodic changes of composition
 - upshot: $m_{\nu} \neq 0$

The PMNS Matrix

- Pontecorvo–Maki–Nakagawa–Sakata
- Neutrino mixing matrix
- Similar to CKM matrix for quarks
- Typically parametrised by three Euler angles $(\theta_{13}, \theta_{23}, \theta_{12})$ and single CP-violation phase (δ) :

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

where $s_{ij} = sin(\theta_{ij}), \ c_{ij} = cos(\theta_{ij}).$

- From observations:
 - θ_{23} , θ_{12} large
 - θ_{13} very small

Reference Measurements for ν Experiments

Introducing T2K

- Tokai-to-Kamioka: a long-baseline neutrino experiment
- search for and measure $\nu_{\mu} \rightarrow \nu_{e}$, $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations
- improve measurement of θ_{23} , Δm_{23}^2
- one of the first measurements of θ_{13}
- in the future: search for ν CP violation

Reference Measurements for ν Experiments

T2K Neutrino Beam

- J-PARC accelerator complex: proton beams at 31 GeV
- Muon neutrinos produced in a 90-cm carbon target
- Off-axis neutrino beam

The Task for NA61

- Problem: ν emission from target complicated
- Good knowledge of hadron production is a must
- Simulations are model-dependent
- NA61: large acceptance, matching energy
- $\bullet\,$ Our goal: measure inclusive hadron spectra in p+C collisions at 31 GeV
 - thin (2 cm) target
 - replica T2K target

Reference Measurements for ν Experiments

Results So Far

Comparison to FLUKA2002

Comparison to UrQMD 1.3.1

- Published π[±] spectra from 2007 pilot run:
 - Phys.Rev. C84 (2011) 034604
- Published *K*⁺ spectra from 2007 pilot run:
 - Phys.Rev. C85 (2012) 035210
- Finalising 2009 results

Reference Measurements for ν Experiments

Results So Far

- Published π^{\pm} spectra from 2007 pilot run:
 - Phys.Rev. C84 (2011) 034604
- Published *K*⁺ spectra from 2007 pilot run:
 - Phys.Rev. C85 (2012) 035210
- Finalising 2009 results

Reference Measurements for ν Experiments

Results So Far

- Published π^{\pm} spectra from 2007 pilot run:
 - Phys.Rev. C84 (2011) 034604
- Published *K*⁺ spectra from 2007 pilot run:
 - Phys.Rev. C85 (2012) 035210
- Finalising 2009 results

Reference Measurements for ν Experiments

- First published T2K results: systematic-error estimate based on NA61 results
 - Phys.Rev.Lett. 107 (2011) 041801
- First model improvements
 - UrQMD: arXiv:1107.0374 [hep-ph]
 - Geant4 FRITIOF: arXiv:1109.6768 [hep-ph]
- Near future: reference measurements for the NuMI ν source at Fermilab
 - $\bullet\,$ p beams at 120 GeV/c

Reference Measurements for Cosmic-Ray Experiments

2 Physics Goals

- Reference Measurements for ν Experiments
- Reference Measurements for Cosmic-Ray Experiments
- High p_T , p+p and p+A
- Critical Point and the Onset of Deconfinement

Reference Measurements for Cosmic-Ray Experiments

What Are Cosmic Rays?

Ranticle Physics Sides • Sasch a Marc Schmeling 1999 • Original Picture: CERN

- Particle from astrophysical sources
- Interactions in Earth's atmosphere
- Two measurement methods:
 - direct (with satellites)
 - extensive air showers

Summary

Reference Measurements for Cosmic-Ray Experiments

Air-shower Detectors

Marek Szuba, 2012.06.12

Summary

Reference Measurements for Cosmic-Ray Experiments

What We Look For

- energy spectrum
- particle species
- sources!

Introduction to NA61/SHINE

Physics Goals

Summary

Reference Measurements for Cosmic-Ray Experiments

Cosmic-ray Energy Spectrum

Summary

Reference Measurements for Cosmic-Ray Experiments

Cosmic-ray Energy Spectrum

Reference Measurements for Cosmic-Ray Experiments

The Knee

Propagation, max. energy of cosmic Pevatrons?

Reference Measurements for Cosmic-Ray Experiments

The Ankle

Galactic-extragalactic transition or energy loss?

Reference Measurements for Cosmic-Ray Experiments

The Ankle

Galactic-extragalactic transition or energy loss?

Reference Measurements for Cosmic-Ray Experiments

GZK Suppression

Cosmic-ray interaction with the microwave background

- energy loss of protons via
 - $p + \gamma_{2.7K} \rightarrow p + \pi^0$ • $p + \gamma_{2.7K} \rightarrow n + \pi^+$
- photodisintegration of nuclei:
 - $A + \gamma_{2.7K} \rightarrow (A k) + N_k$

Reference Measurements for Cosmic-Ray Experiments

How We Measure It

Ways of measuring air showers:

- Fluorescence telescopes
 - longitudinal development
 - calorimetric
 - require moonless nights (au pprox 13 %)
- Surface arrays
 - lateral distributions
 - particle densities
 - (au pprox 100 %)
- Surface calorimeters
 - shower-core energy
- Digital radiotelescopes
 - radio-wave emissions from air showers
 - in (re-)development

How We Measure It

Example detectors:

- KASCADE surface array + calorimeter
- KASCADE-Grande surface array
- LOPES radiotelescopes
- JEM-EUSO fluorescence telescope
- Auger surface array + fluorescence telescopes

Caveats

- Hadron production in showers not entirely understood
- Model dependence of muon density!
- Transition between low- and high-energy interaction models
- Need phenomenological calibration!

Reference Measurements for Cosmic-Ray Experiments

The Task for NA61

- Primary-level energies not attainable...
- ...but maximum of "grandfather" hadron energy in the SPS energy range
- Relevant runs:

Projectile	Target	E _{beam} [GeV]	Year
р	С	31	2007
р	С	31	2009
π^{-}	С	158, 350	2009

Summary

Reference Measurements for Cosmic-Ray Experiments

The Task for NA61

158 GeV/c distributions compared with CR-experiment ranges

 p_T vs x_F Colour maps: 2009 data. Black contours: simulations.

Summary

Reference Measurements for Cosmic-Ray Experiments

The Task for NA61

350 GeV/c distributions compared with CR-experiment ranges

 p_T vs x_F Colour maps: 2009 data. Black contours: simulations.

KASCADE (10¹⁵eV)

Reference Measurements for Cosmic-Ray Experiments

The Task for NA61

350 GeV/c distributions compared with CR-experiment ranges **KASCADF-Grande**

 p_T vs x_F Colour maps: 2009 data. Black contours: simulations.

NA61 offers good coverage of the region of interest

Reference Measurements for Cosmic-Ray Experiments

The Task for NA61

- \bullet Our goal: measure inclusive hadron spectra in p+C and $\pi+{\rm C}$ collisions
 - only the latter is cosmic ray-specific
- Status:
 - obtained h^{\pm} spectra for both energies
 - to be released soon, pending final cross-checks and model comparison

High p_T , p+p and p+A

2 Physics Goals

- Reference Measurements for ν Experiments
- Reference Measurements for Cosmic-Ray Experiments
- High p_T , p+p and p+A
- Critical Point and the Onset of Deconfinement

Summary

High p_T , p+p and p+A

High- p_T , p+p and p+A

- p+p and p+A collisions are important reference systems
 - spectra, N_{coll}, R_{AA}, Cronin effect, ...
- High p_T : insight into the pQCD regime
- Problem: little available data!
 - only 2 % hard scattering at top SPS energy
 - parametrisations introduce model dependency
- Our task: take advantage of our high event rate
 - e.g. p+p at 158 GeV 50 million events!

Critical Point and the Onset of Deconfinement

2 Physics Goals

- Reference Measurements for ν Experiments
- Reference Measurements for Cosmic-Ray Experiments
- High p_T , p+p and p+A
- Critical Point and the Onset of Deconfinement

Critical Point and the Onset of Deconfinement

QCD Phase Diagram

- The critical point of the hadronic-deconfined phase transition is now believed to occur at mid SPS energies
- Onset of deconfinement visible in NA49 data
- More detailed scans:
 - NA61/SHINE
 - Beam Energy Scan at the RHIC
 - Upcoming programmes at FAIR GSI and JINR

Introduction to NA61/SHINE

Physics Goals

Summary

Critical Point and the Onset of Deconfinement

Phase-diagram Scan — Other Experiments

Facility	SPS	RHIC	Nuclotron-M	NICA	SIS-100	SIS-300	LHC
Laboratory	CERN Geneva	BNL Brookhaven	JINR Dubna	JINR Dubna	FAIR GSI Darmstadt	FAIR GSI Darmstadt	CERN Geneva
Experiment	NA61/SHINE	STAR PHENIX	MB@N	MPD	HADES	CBM	ALICE ATLAS
Start	2009(11)	2010	2015	2017	2017/18	2019/20	2009
$\sqrt{s_{NN}}$ [GeV]	5.1-17.3	7.5 (5?)–200	<~3.5	4–11	2.3–~5	~4.5-8.5	up to 5500 p+p: 900-14000
Physics	CP & OD	CP & OD	HDM	HDM & OD	HDM	CP & OD	PDM

CP — critical point; OD — onset of deconfinement, mixed phase, first-order phase transition; HDM — hadrons in dense matter; PDM — propertiess of deconfined matter

Critical Point and the Onset of Deconfinement

Results from NA49

Evidence for the onset of deconfinement:

- Phys.Rev. C77 (2008) 024903
- characteristic spectra properties: horn, kink, step
- result of a one-dimensional (energy) scan
- certain other results inconclusive

Plans of NA61: extend this scan to two dimensions (energy + system size), with high statistics.

Critical Point and the Onset of Deconfinement

The Two-dimensional Scan

Critical Point and the Onset of Deconfinement

Secondary Ion Beams

• SPS beams: p and Pb only

- Ar and Xe to be added soon
- adding new species complicated
- solution for light ions: fragmentation-ion beam line
- 2011 test runs: achieved highly pure, stable ⁷Be beams at 40*A*, 75*A* and 158*A* GeV/c

Introduction to NA61/SHINE

Physics Goals

Critical Point and the Onset of Deconfinement

Preliminary Results Additional π^- Spectra from p+C Collisions at 31 GeV

Critical Point and the Onset of Deconfinement

Preliminary Results Λ, K_{S}^{0} and Δ^{++} Yields in p+C Collisions at 31 GeV

NA61/SHINE shows how much there is still left to study far from the high-energy frontier of the LHC. We look forward to sharing *many* more results with you in the future!

THANK YOU

