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Many technological applications of superconductors and superconducting

materials involve Josephson junctions (JJs)

superconductor 1 I Juperconductor 2

weak link

Typical types of junctions: SIS, SNS (I: insulator, N: normal metal), or more

exotic combinations (sls, sId, dId,...)

Each combination comes with its own special phenomenology, e.g. the

typical current-phase relation I = Ij,xSsin?d may vary.



Our interest.

Motivated by the physical significance of such configurations we would like
to understand the properties of systems that exhibit:

() a layered structure,

it) are strongly coupled in the direction of each layer, and

ut) the interlayer interactions are weak o

A 4

weak coupling

>
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Dimensions can vary, more complicated networks can be imagined.



Physics of a single layer.

On each (2+1)-dimensional layer lives a strongly coupled (large-N) QFT.
We assume this theory has a dual weakly curved gravitational description

(a holographic superconductor, an example below...)



Physics of the interlayer coupling.

2-layer system: w/o coupling the total QFT=QFT1 ® QFT> is described by

the direct sum of actions S = 57 + .55 .

The system has: 2 separate large-N gauge symmetries
2 separately conserved stress-energy tensors

2 separate sets of global R-symmetries

The dual gravity description 1s obvious: a trivial bi-gravity (bi-string)
theory.



In field theory the unigue type of inter-theory coupling that respects the

separate gauge invariances of QFT| and QFTs is one effected by multi-trace

deformations.

For example, if O; 1s a scalar single-trace operator of QFT1 and 0> a scalar

single-trace operator of QFT5 then one can consider interactions of the form

/d(2+1)x W(01,0,)

where Wis multi-trace, e.qg. a double trace of the form

W = g12010-

This coupling may be relevant or irrelevant, break relative symmetries etc...

g2 scales as O(IV?) and preserves the 1/N expansion.



What happens in gravity? " designer multi-gravity

The bi-gravity theory becomes non-trivial.

Such bi-gravity theories have a well-known large-N description in the

AdS/CFT correspondence.

At tree-level in gravity the boundary multi-trace interactions map

to mixed boundary conditions for the dual fields.

Beyond tree-level massive gravity...



An 1illustrative model

Assume a large-N (2+1)-dimensional QFT with a dual bulk gravitational

description that can be reduced to the (3+1)-dimensional Einstein-abelian

Higgs model:
Snar = [ @15 | R~ {GADF = (V16 - J(0(T6 - ) = Y{jo])

R: Rical scalar,

A: abelian gauge field with F'=dA its field strength,
@: a charged complex scalar field with U(1) charge ¢, and ¢ = |¢| o0

G, J, Viur are model-dependent functions of I¢l (left arbitrary in our

discussion).



Under gauge-gravity duality:
® A maps to a U(l) current on the boundary QFT

® ® maps to a complex scalar operator O with scaling dimension A

(our *Cooper-pair’ operator whoose vev will break the U(1) leading to
superfluidity/superconductivity)

For asymptotically AdS4 solution near the boundary

vev, source 2 2 dr?
‘ ds® ~ridz"dx, + —
of O r
T ) — B
gb ~ — 4+ ... F -+ ...
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Building a junction

On the QFT side the weak link 1s implemented via a multi-trace interaction

Stot = Sl + SQ + /d2+1$ W(Ol, 02)

On the gravity side W translates to scalar field mixed boundary conditions.

With asymptotics a1 51
y p ¢12 A1++ d—A1+
T 1
o 52
g >~ —— + ...+ +
° TQAQ rg_A

W translates to the mixed bc’s

B1 =0, W(ai,a2) , B2 =0a,W(a1,a2)
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Finding the ground state

Standard practice in field theory:

m compute and minimize the quantum effective potential.

Typically very hard. More complicated at finite temperature
and dendsity but we can do tt...
Gravity gives a tractable prescription. /

For boost invariant planar solutions (A=0, 7=0) in the above example

V(Ckl, 042) = W(Ozl, 042) —+ ZWz(az)

1=1




A holographic Josephson junction example

OO

This quiver diagram refers to a QFT Lagrangian of the form

[,tot:£1+£2+901|2+g|(92|2+h ei0010T+6—i190T02 , hER, Y e [0,27‘(’)
2 1

which gives

Mw

Vo, asz) (g\ozz |ozz ) + h (ewaloe; + e_woffozg)

1=1
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The ground state 1s determined by solving the algebraic extremization

equations

. S

gaq + he ay + 5041]041\5_2 =0
- S

gos + he®ay + 5042]042\5_2 =0

In the algebraically simple case 0=4

: s
ay = —h~1e™ (g + 5](11\2) a1

(a1 =0, (2) |a1|2=§<ih—g>, (3) | |? = l(gi¢g2—4h2)

S
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Networks from designer multi-gravity

The framework can be generalized In a straightforward manner to describe

networks of very diverse architecture and internal structure

vertices/sites >

links >

examples: with 2-trace
links

tn quenched disorder

compultations via the
replica trick

large-N QFTs with
gravity duals

multi-trace interactions
mixed bes

with 5-trace
linky

4 C 1
New “potential

k
V=W(u,...,«a Z

-
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Linear Josephson junction array as a simple model of a layered SC
(Decondstructing an extra space dimendion)

o™

I @x\ o W‘g
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weak coupling
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Q_Q QO Q Q

S :
V=> (9|04n|2 + 5|an|5 +h (e anag, +eVa; anH))

n

15



The vacuum 1s determined by solving the algebraic eqgs of a discrete

dynamical system

: : S
go, + h (GZﬁOén_l + e—zﬁan_l_l) -+ §an’an‘5—2 =0
The algebraically simple case 0=4 has been studied extensively in the

literature of dynamical systems (vee e.g. review by Toironis, Hennig "99) with

applications in diverse condensed matter systems.
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Rich solution space: complexity

1) Chaos and bifurcation.
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Diverse possibilities and applications

(Un)conventional Josephson junctions

|

|
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|

|

weak linklinterface

|

left superconductor !
|

|

|

alternative to other approaches
based on tnhomogeneous holo-

SC volutions (e.g. Horowtlz,
Santos, Bay ’11)

right superconductor
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Outlook

Many possibilities for further work, e.g.

1) Physics of unconventional JJs

2) Magnetic fields/charge density/temperature
3) JJNs with different architectures

4) Time-dependence

5) ...
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