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Dileptons as probes of strongly interacting plasma

If a strongly interacting plasma (say, quark-gluon-plasma. . . )
couples weakly to leptons via a photon, then the plasma
produces virtual photons, which then decay into
fermion-antifermion pairs.

The dileptons can propagate relatively easily through the
strongly coupled plasma, since they are coupled to the plasma
not via the strong interaction, but a relatively weak
electromagnetic interaction.

Thus dileptons can provide an observational window into the
thermalization process of the plasma.

Calculating the dilepton production rate in a strongly
interacting plasma is of course in general very difficult: only
the leading order result is known even in the weak coupling.
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Dileptons and AdS/CFT

The AdS/CFT duality offers a unique approach to describing
strongly interacting systems:

4+1 dimensional AdS
weakly coupled gravity

ks +3 3+1 dimensional Minkowski
strongly coupled CFT

In an ideal world we would like to calculate predictions in
QCD, an ongoing project called AdS/QCD.

We calculate the dilepton production in N = 4 SYM, from
which we hope to learn something qualitative about strongly
coupled theories.

Even though it is not QCD, it is a non-abelian strongly
interacting theory, where the temperature breaks both SUSY
and the conformal invariance.
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The dilepton production rate in finite-T AdS/CFT was first
calculated by Caron-Huot et al. [hep-th/0607237].

1 2 3 4 5

0.2

0.4

0.6

0.8

1
χ

µ µ
(q
=

w
)/

w

w ≡ k0/(2πT )

FIG. 1: Trace of the spectral function for lightlike momenta divided by frequency, ηµνχµν(w=q)/w, in units
of 1

2
N2

c
T 2, plotted as a function of frequency, with w ≡ k0/(2πT ) and q ≡ |k|/(2πT ). At small frequency,

χµ
µ(w=q)/w approaches a constant limiting value, while at large frequency χµ

µ(w=q)/w falls as w−1/3.
The solid (red) line shows the exact result (3.18) while the dashed lines show the low- and high-frequency

asymptotics (3.19).
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With the help of the identity 2F1 (a, b; c; z) = (1−z)−a
2F1 (a, c−b; c; z/(z−1)) [21], the denominator

can be written as
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Therefore, the spectral function for light-like momenta is

χµ
µ(k

0=k) = −4 Im ΠT (k0=k) =
N2

c T 2 w

8





2F1



1− 1

2
(1+i)w, 1 + 1

2
(1−i)w; 1−iw;−1





−2
. (3.18)

This result shows that the trace of the spectral function χµ
µ(K) is manifestly positive, as

it should be. (Note that for light-like momenta, χtt = χzz, and therefore χµ
µ = 2χxx.) The

asymptotic behavior for small and large frequencies is14
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A graph of the trace of the spectral function at light-like momentum, together with the asymp-

totics (3.19), is shown in Fig. 1. The leading small-frequency behavior agrees with that found

earlier in Ref. [16], where it was used to evaluate the diffusion constant of R-charge in SYM theory.

The expression (3.18) for the spectral function is valid to leading order in the limit of large Nc and

large ’t Hooft coupling. This result shows that the photon production rate for N =4 SYM theory

approaches a finite limit as λ→∞.

14 These asymptotics are derived in appendix A. A simple approximation which is asymptotically correct and accurate

to better than 2% for all frequencies is χµ
µ(w=q) ≈ 1
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We are interested in finding out how does this change when
out of equilibrium – can we use the dileptons as probes of the
thermalization process?
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The AdS/CFT-duality

AdS/CFT conjecture relates 4 + 1-dimensional classical
gravity in AdS to a strongly interacting conformal field theory
in Minkowski.

“center” of AdS boundary

r = 0 r =∞

The AdS/CFT-dictionary then tells us how to relate quantities
in the gravity side and the CFT side.

This AdS-metric describes the vacuum state of a CFT living
in the boundary.

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dx2
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Finite temperature AdS/CFT

If one adds a black hole to the AdS-metric,

ds2 = −(1−
r4h
r2

+ r2)dt2 +
dr2

1− r4h
r2

+ r2
+ r2dx2 ,

this corresponds to the CFT having the same temperature as
the Hawking temperature of the black hole, T = rh/π.

center horizon boundary

r = 0 rh ∞

One can now repeat calculations done in flat AdS producing
the quantities but now in finite-T!
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Our out-of-equilibrium setup

To describe a thermalizing plasma, we need to have a setup
where the AdS-metric approaches a black hole solution.
⇒ Gravitational collapse

Easiest to do is to put a thin shell at some value of r = rs :

Outside the metric looks like the black hole solution.
Inside, just like with 3-dimensional shells then, doesn’t feel the
gravity of the shell and thus the metric is flat AdS.

horizon shell boundary

r = 0 rh rs ∞

To relate these two a priori unrelated patches, one has to map
the coordinates from one patch to the other. It turns out that
the radial coordinate is continuous, while the time coordinate
is different in both of the patches.
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The quasistatic approximation for the background

In general any (continuous) spacetime is a solution of the
Einstein equations given a weird enough energy momentum
tensor

Both of the patches are vacuum solutions, so thus the only
(gravitating) matter can be on the boundary r = rs .

To solve the dynamics of the background, e.g. the time
dependence of rs , one would need to specify the stuff that the
shell is composed of, i.e. the equation of state of the shell.

We don’t do this, but rather assume that whatever the shell is
composed of, it moves slowly compared to the timescales we
are interested in.
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Dilepton production rate in AdS

The dilepton production rate of a thermal plasma is given in
general by the Wightman function of the photon field,

dΓ

d4q
= −

αηµνΠ<
µν

24π4Q2
.

To calculate the photon Wightman function, we add a U(1)
gauge field in the bulk, which has the usual equation of
motion

∂µ

(√
−ggµνgαβFνβ

)
= 0 ,

plus EM couplings to the strongly interacting plasma and the
leptons.

We can then use the magic of AdS/CFT to calculate the
Wightman function of the photon field in the boundary by
solving classical equations in the bulk.
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The prescription for the correlator

Literature1 tells us how to calculate the retarded Green’s function:

Solve the EOM in the bulk and then write it in terms of a
power series expansion around the singular point of its
equation of motion, in our case in the boundary. Using the

notation u =
r2h
r2

,

Eoutside(u)
u→0
= A[1 + h u ln u + . . .] + B[u + . . .] .

The retarded Green’s function is then given by

Π = −N2
cT

2

8

B
A
.

1See Son & Starinets [hep-th/0205051] and Kovtun & Starinets
[hep-th/0506184]
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Fluctuation-dissipation-theorem

But the production rate was given by the Wightman function,
not the retarded Green’s function!

The two can be related by using the fluctuation-dissipation
theorem,

ηµνΠ<
µν = −2n Im Πµ

µ .

However, the fluctuation-dissipation theorem doesn’t generally
apply when out-of-equilibrium (for an illustrative example, see
e.g. Chesler & Teaney [1112.6196]).

Fortunately one can do a calculation similar to that of Herzog
& Son [hep-th/0212072] to show that the relation between
the Wightman function and the retarded Green’s function still
applies!
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Calculating the Green’s function

We are interested in virtual photons that decay into dileptons,
and thus we choose the four-momentum of the photon to be
k = (ω,~0).

Using the u variable, u = r2h/r
2, the equation of motion reads

as

∂2uE +
∂uf

f
∂uE +

ω̂2

u f 2
E = 0 ,

where f is given by f ' r2h/u for inside and f ' r2h (1/u − u)
outside.

Here we have defined the rescaled ω̂ = ω/2πT . Note also
that we have Fourier transformed this in 4-space, but not in
the radial AdS direction.
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Using the prescription in equilibrium

The EOM has two solutions outside the shell, which we call

the infalling mode, Ein, since constant wavefronts propagate
towards the horizon
the outgoing mode, Eout, since constant wavefronts propagate
towards the boundary

In the finite-T/equilibrium case, there can be no information
escaping from the black hole, and thus there should be no
outgoing mode present at the horizon.

This defines the solution uniquely and fixes A and B giving
the correlator.

Olli Taanila Holographic dilepton production in a thermalizing plasma



Using the prescription out-of-equilibrium

Now the solution is a linear combination of both modes:

Eoutside = c+Ein + c−Eout

The combination is fixed by matching the outside solution to
the inside solution using the boundary conditions

Einside =
√
f Eoutside E ′inside = f E ′outside f ' 1− r4h/r

4

The boundary condition is essentially just requiring the
continuity of the solution, and taking into account the
difference in coordinates.
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The spectral density χ = −2 Im Π
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The spectral density as a function of ω for rs/rh = 1 (thermal case,
black dashed), rs/rh = 1.005 (blue), and rs/rh = 1.1 (red).
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Relative deviation of χ from the thermal limit
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Outlook

We can calculate the production rate of dileptons in a
thermalizing N = 4 SYM plasma in the quasistatic
approximation, i.e. large ω.

The spectral function features “signature” oscillations, and
has the correct thermal limit.

Trying to have “realistic” shell evolution would be interesting,
but seems to make the calculation extremely difficult.

Computing the production rate of photons can be done using
a very similar computation: Instead of the photon having a
momentum (ω,~0), it should now have (|~k |, ~k).
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You can do the same thing with prompt photons. . .
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