Holographic Description of the QCD Phase Diagram & Out of Equilibrium Dynamics

Nick Evans University of Southampton

Keun-Young Kim
Maria Magou
Astrid Gebauer

Kolymbari, June 2012

Gauge Gravity Duality

Dilatations

$$\begin{array}{ccc} x & \to & e^{\phi}x \\ A^{\mu} & \to & e^{-\phi}A^{\mu} \\ u & \to & e^{-\phi}u \end{array}$$

String theory has provided a new way to study gauge theory

We treat RG scale as a space-time direction

The conformal symmetry of classical gauge theory is realized through AdS 5

Gauge invariant operators and sources are represented by fields in the bulk

N=4 SYM

is the most controlled example base on Maldacena's inspired guess

Large N_c strongly coupled limit

IIB strings on AdS₅x S⁵

A conformal quantum theory

Such Correspondences are much more general both in a top down and bottom up sense though

Add Quarks

Add field in the bulk that describes

 \overline{q} q m_q

The AdS/CFT dictionnary relates these to constants of integration in EoM

What action to take?

We minimize the area of the D7 in the geometry of the D3s ($N_f << N_c$)

Add Confinement and Chiral Symmetry Breaking

We can add in a field that corresponds to a running coupling

Top down – introduce a B field

$$e^{f \Phi} = \sqrt{1 + rac{B^2}{(
ho^2 + L^2)^2}}$$

Or phenomenologically

$$e^{\Phi} = g_{\mathrm{YM}}^2(r^2) = g_{\mathrm{UV}}^2 \left[A + 1 - A \tanh \left[\Gamma(r - \lambda) \right] \right]$$

The dilaton interpolates between QCD like case and "walking" dynamics (black is B field induced chiral symmetry breaking)

●is the scale of the problem..

A is height

e is width

Add Temperature

$$ds^{2} = \frac{r^{2}}{R^{2}}(-fdt^{2} + d\vec{x}^{2}) + \frac{R^{2}}{r^{2}f}dr^{2} + R^{2}d\Omega_{5}^{2}$$

where $R^4 = 4\pi g_s N \alpha'^2$ and

$$f := 1 - \frac{r_H^4}{r^4} , \qquad r_H := \pi R^2 T .$$

Quarks are screened by plasma

A black hole
"Hawking
radiates at
temperature
T and heats
up the gauge
theory"

and Density

We can think of O as a background vev for the temporal component of the photon...

$$\bar{\psi}i(-iA^t\gamma_0)\psi \rightarrow \bar{\psi}\mu\gamma_0\psi$$

We add a new field to give

$$A^0 \simeq \mu + \frac{d}{\rho^3} + \dots$$

The action is proscribed in top down models (D7 world-volume gauge field)

Phase Diagram for B Field Theory, m=0

JHEP 1003:132,2010. e-Print: arXiv:1002.1885 [hep-th]

More Phase Diagrams

NE, K-Y K, Gebauer, Magou

FIG. 6: Plots for three possible phase diagrams for the choices A=3,5,8. Large (small) A gives second (first) order transition at low T. $\Gamma=1,\lambda=1.7$.

Walking encourages first order transition

Breaking the □-L symmetry

QCD-like phase diagrams...

15

10

$$g_t = \frac{(w^4 - w_H^4)^2}{w^4(w^4 + w_H^4)}, \qquad g_x = \frac{w^4 + w_H^4}{w^4}$$

$$w^4 \to \rho^2 + \frac{1}{\tilde{\alpha}} L^2$$

Baryonic Phase

Linked D7/D5 systems describe a baryonic density

Out of Equilibrium Dynamics

Chiral Transition in Janik's Cooling Geometry

The black hole grows/shrinks changing the effective potential...

$$ds^2 = \frac{r^2}{R^2} (-e^{a(\tau,r)} d\tau^2 + e^{b(\tau,r)} \tau^2 dy^2 + e^{c(\tau,r)} dx_\perp^2) + \frac{R^2}{r^2} (d\rho^2 + \rho^2 d\Omega_3^2 + dL^2 + L^2 d\phi^2)$$

With Ingo Kirsch, Tigran Kalaydzhyan (DESY)

$$a(\tau, z) = \ln\left(\frac{(1 - v^4/3)^2}{1 + v^4/3}\right) + 2\eta_0 \frac{(9 + v^4)v^4}{9 - v^8} \left[\frac{1}{(\varepsilon_0^{3/8}\tau)^{2/3}}\right] + \mathcal{O}\left[\frac{1}{\tau^{4/3}}\right],$$

$$b(\tau, z) = \ln(1 + v^4/3) + \left(-2\eta_0 \frac{v^4}{3 + v^4} + 2\eta_0 \ln \frac{3 - v^4}{3 + v^4}\right) \left[\frac{1}{(\varepsilon_0^{3/8}\tau)^{2/3}}\right] + \mathcal{O}\left[\frac{1}{\tau^{4/3}}\right],$$

$$b(\tau, z) = \ln(1 + v^4/3) + \left(-2\eta_0 \frac{v^4}{3 + v^4} - \eta_0 \ln \frac{3 - v^4}{3 + v^4}\right) \left[\frac{1}{(\varepsilon_0^{3/8}\tau)^{2/3}}\right] + \mathcal{O}\left[\frac{1}{\tau^{4/3}}\right],$$

$$0.0$$

D7 dynamics with B field...

Equilibrium vs PDE solutions...

Bubble formation...

Conclusion

Strongly coupled phase diagrams with rich structure arXiv:1002.1885 [hep-th], arXiv:1109.2633 [hep-th], arXiv:1204.5640 [hep-th]

Out of equilibrium dynamics arXiv:1011.2519 [hep-th]