IMPLICATION OF RESULTS FROM HEAVY-ION EXPERIMENTS FOR COMPACT STARS

Debaratí Chatterjee

Institut für Theoretische Physik Universität Heidelberg, Germany

Collaborators: Jürgen Schaffner-Bielich Simon Weissenborn

> Irína Sagert, MSU Laura Tolos, IEEC, Barcelona Crístían Sturm, GSI

NEUTRON STARS

Life Cycle of a Star

- Produced in supernova explosions (Type II)
- Compact massive objects, $M \sim 1-2 M_{solar}$, $R \sim 10 \text{ km}$

NEUTRON STAR STRUCTURE

NEUTRON STAR STRUCTURE

Tolman-Oppenheimer-Volkov equations of relativistic hydrostatic equilibrium:

$$\frac{dp}{dr} = -\frac{G}{c^2} \frac{(m+4\pi pr^3)(\epsilon+p)}{r(r-2Gm/c^2)}$$
$$\frac{dm}{dr} = 4\pi \frac{\epsilon}{c^2} r^2$$

Thursday 14 June 2012

Measurement of neutron star masses : Relativistic binaries

Keplerian parameters

- Orbital period *P*^b
- Projected semi-major axis $x = (a_p \sin i) / c$
- Orbital eccentricity e
- Longitude of periastron ω
- Epoch of periastron passage To

Measurement of neutron star masses : Relativistic binaries

Keplerian parameters

- Orbital period *P*_b
- Projected semi-major axis $x = (a_p \sin i) / c$
- Orbital eccentricity e
- Longitude of periastron ω
- Epoch of periastron passage To

Post-Keplerian Parameters

- Relativistic advance of periastron $\dot{\omega}$
- Gravitational redshift and time dilation γ
- Orbital decay change in period \dot{P}_b
- Shapiro delay range r and shape s

Mass measurements

Lattimer and Prakash, arXiv1012.3208

Highest mass measurement : J1614-2230

Lattimer and Prakash, arXiv1012.3208

Timing residual as a function of pulsar's orbital phase

Monte Carlo analysis: Probability density function

Demorest et al (Nature 2010)

Constraining the EoS

 $M^{max}(theo) > M^{max}(obs)$

Lattimer and Prakash, arXiv1012.3208

Thursday 14 June 2012

Properties of dense nuclear matter

Symmetric nuclear matter at saturation

- * saturation density $n_0 = 0.17 \text{ fm}^{-3}$
- * binding energy per nucleon B/A = -16.3 MeV
- * effective nucleon mass $m^*/m = 0.55 0.8$
- * incompressibility $K_o = 235 \pm 14 \text{ MeV}$

Properties of dense nuclear matter

Asymmetric nuclear matter at saturation

- * saturation density $n_0 = 0.17 \text{ fm}^{-3}$
- * binding energy per nucleon B/A = -16.3 MeV
- * effective nucleon mass $m^*/m = 0.55-0.8$
- * incompressibility $K_o = 235 \pm 14 \text{ MeV}$
- * symmetry energy $E_{sym} = 28-32 MeV$

Density dependence c

Asymmetric nuclear matter at saturation

- * the density dependence of symmetry energy is a crucial quantity in nuclear physics
- * $nuclei \Rightarrow n < n_0$
- * Isospin diffusion data from intermediate energy HIC provide constraint on L only around n₀
- * neutron skin thickness of heavy nuclei
- * Giant dipole resonance in ²⁰⁸Pb
- * Pygmy dipole resonance in ²⁰⁸Pb

Density dependence of Symmetry Energy *L*

Nuclear matter beyond saturation

 Density dependence of symmetry energy "L" becomes highly uncertain at n >> n₀

Thursday 14 June 2012

Density dependence of Symmetry Energy *L*

Nuclear matter beyond saturation

 Density dependence of symmetry energy "L" becomes highly uncertain at n >> n₀

*** Elliptic flow of nucleons in non-central nucleus-nucleus collisions

 (not conclusive, new degrees of freedom at high energies, momentum dependence of interaction, model dependence of analysis)

Density dependence of Symmetry Energy *L*

Nuclear matter beyond saturation

 Density dependence of symmetry energy "L" becomes highly uncertain at n >> n₀

*** Elliptic flow of nucleons in non-central nucleus-nucleus collisions

 (not conclusive, new degrees of freedom at high energies, momentum dependence of interaction, model dependence of analysis)

* K^+ meson production in nuclear collisions \checkmark

K⁺ meson production in heavy-ion collisions

KaoS experiment, GSI Darmstadt

Subthreshold production of K+ particles

- * K^+ particles produced by multiple NN collisions (NN \rightarrow NAK, NN \rightarrow NNK \overline{K}) or secondary collisions ($\pi N \rightarrow AK, \pi A \rightarrow N\overline{K}$)
- * Nuclear matter compressed up to $\sim 2-3 n_0$
- ★ Production of K+ particles sensitive to the nuclear EoS
 ⇒ tool to probe compressibility of nuclear matter at ~ 2-3 n₀

Sturm et al. (KaoS collaboration), PRL 2001

Hartnack, Oeschler, Aichelin, PRL 2006

- * K⁺ multiplicity ratio in Au+Au and C+C collisions at 0.8 AGeV and 1.0 AGeV is sensitive to the compression modulus of matter
- * transport model calculations performed: Skyrme-type nucleon potential with 2BF, 3BF were applied, with parameters to reproduce a soft EoS (with K = 200 MeV) and a stiff one (with K = 380 MeV).
- *transport models agree, confirm that matter in the collision zone reaches densities up to 2-3 n*₀
- * only K~ 200 MeV can describe the data (KaoS collaboration, 2007)
- \Rightarrow the nuclear EoS is soft

Phenomenological EoS for NS core

$$\frac{E}{A} = m_n \left(1 - Y_p\right) + m_p Y_p + E_0 u^{\frac{2}{3}} + B \frac{u}{2} + D \frac{u^{\sigma}}{(\sigma + 1)} + \left(1 - 2Y_p\right)^2 \left[\left(2^{\frac{2}{3}} - 1\right) E_0 \left(u^{\frac{2}{3}} - F(u)\right) + S_0 u^{\gamma} \right], \quad (1)$$

Skyrme EoS

- * E_0 = binding energy of SNM at n_0
- * *baryon number density* $u = n/n_0$
- * $Y_p = proton fraction$
- * *density dependence of symmetry energy chosen as a power law with u^y*
- * parameters σ , B,D (2BF, 3BF)

Phenomenological EoS for NS core

$$\frac{E}{A} = m_n \left(1 - Y_p\right) + m_p Y_p + E_0 u^{\frac{2}{3}} + B \frac{u}{2} + D \frac{u^{\sigma}}{(\sigma + 1)} + \left(1 - 2Y_p\right)^2 \left[\left(2^{\frac{2}{3}} - 1\right) E_0 \left(u^{\frac{2}{3}} - F(u)\right) + S_0 u^{\gamma} \right], \quad (1)$$

- * E_0 = binding energy of SNM at n_0
- * *baryon number density* $u = n/n_0$
- * $Y_p = proton fraction$
- * *density dependence of symmetry energy chosen as a power law with u^y*
- * parameters σ , B,D (2BF, 3BF)

- * Parameters fitted to reproduce saturation density, binding energy, stiffness parameter
- * Variation of values: - K = 170 - 220 MeV- $S_0 = 28 - 32 \text{ MeV}$ - $\gamma = 0.5 - 1.1$ (motivated by heavy-ion experiments)
- * $M = 1.25 M_{sol}$: lightest pulsar mass deduced from observations

Radii and central densities of $1.25 M_{sol}$ neutron stars with K, for different values of S_0 and γ

* The central densities of the corresponding stars are in the range of the density region explored by KaoS.

Radii and central densities of $1.25 M_{sol}$ neutron stars with K, for different values of S_0 and γ

- * The central densities of the corresponding stars are in the range of the density region explored by KaoS.
- The radii largely depend on the density dependence of the symmetry energy γ

Radii and central densities of $1.25 M_{sol}$ neutron stars with K, for different values of S_0 and γ

Radii and central densities of 1.25 M_{sol} neutron stars with K, for different values of S_0 and γ

- * The central densities of the corresponding stars are in the range of the density region explored by KaoS.
- The radii largely depend on the density dependence of the symmetry energy γ
- * At $K \sim 200$ MeV, stiff and soft symmetry energy configurations lead to a difference in the neutron star radius of around $\Delta R \sim (1 1.5)$ km.

Radii and central densities of $1.25 M_{sol}$ neutron stars with K, for different values of S_0 and γ

- * The central densities of the corresponding stars are in the range of the density region explored by KaoS.
- The radii largely depend on the density dependence of the symmetry energy γ
- * At $K \sim 200$ MeV, stiff and soft symmetry energy configurations lead to a difference in the neutron star radius of around $\Delta R \sim (1 1.5)$ km.
- radii of light neutron stars with M ~ 1.25 M_{sol} are strong candidates for a direct cross check between heavy-ion experiments and astrophysical observations

Massive neutron stars

Rhoades & Ruffini (1974) Hartle (1978)

- * Stiffest causal EoS: $p = \epsilon - \epsilon_f$ above the fiducial density ϵ_f
- * at high densities, smooth transition to the stiffest EoS
- * gives the highest possible mass of a compact star
- * At low densities, EoS should satisfy KaoS constraint

 \Rightarrow new upper mass limit of 3 M_{sol} from heavy-ion data

Equations of State

Densities around and above saturation

Relativistic Mean Field Models (RMF)
with non-linear interaction of mesons, fitted to bulk nuclear matter (GL, TM1)
fitted to properties of nuclei (NL3)

Brueckner Hartree Fock models (BHF)
 realistic N-N interactions

* Phenomenological models
- Skyrme interactions (Bsk8, SLy4)

the KaoS constraint

I. Sagert, L.Tolos, D. C., J. Schaffner-Bielich and C. Sturm, arXiv:1112.0234

Thursday 14 June 2012

Thursday 14 June 2012

I. Sagert, L.Tolos, D. C., J. Schaffner-Bielich and C. Sturm, arXiv:1112.0234 • highest allowed neutron star mass $3M_{sol}$ at $n_{crit} \sim 2 n_0$

• Smaller maximum masses are obtained for $n_{crit} \sim 3 n_0$

• higher n_{crit} is, the later is the onset of the stiffest EoS in the star's interior, less mass is supported

I. Sagert, L.Tolos, D. C., J. Schaffner-Bielich and C. Sturm, arXiv:1112.0234 • highest allowed neutron star mass $3M_{sol}$ at $n_{crit} \sim 2 n_0$

• Smaller maximum masses are obtained for $n_{crit} \sim 3 n_0$

• higher n_{crit} is, the later is the onset of the stiffest EoS in the star's interior, less mass is supported

• a pulsar of 2.7 M_{sol} not ruled out by KaoS data, but requires a fiducial density of ~ 2.2 - 2.5 n_0 .

I. Sagert, L.Tolos, D. C., J. Schaffner-Bielich and C. Sturm, arXiv:1112.0234 • highest allowed neutron star mass $3M_{sol}$ at $n_{crit} \sim 2 n_0$

• Smaller maximum masses are obtained for $n_{crit} \sim 3 n_0$

• higher n_{crit} is, the later is the onset of the stiffest EoS in the star's interior, less mass is supported

• a pulsar of 2.7 M_{sol} not ruled out by KaoS data, but requires a fiducial density of ~ 2.2 - 2.5 n_0 .

I. Sagert, L.Tolos, D. C., J. Schaffner-Bielich and C. Sturm, arXiv:1112.0234 • highest allowed neutron star mass $3M_{sol}$ at $n_{crit} \sim 2 n_0$

• Smaller maximum masses are obtained for $n_{crit} \sim 3 n_0$

• higher n_{crit} is, the later is the onset of the stiffest EoS in the star's interior, less mass is supported

• a pulsar of 2.7 M_{sol} not ruled out by KaoS data, but requires a fiducial density of $\sim 2.2 - 2.5 n_0$

• Since the maximum mass configuration is dominated by the causal high density EoS, the symmetry energy has very little influence on $M_{max}: \Delta M \approx 0.02 M_{sol}$

Summary

- K⁺ multiplicities from heavy-ion collisions indicate a soft nuclear EoS for densities of 2-3 n₀
- We test the implications of results on neutron stars
- Light neutron stars with M \sim 1.25 M_{sol} have central densities \sim 2-3 n₀
- Measurement of radii of low mass neutron stars can test KaoS results
- To test if soft nuclear EoS is compatible with massive neutron stars, we apply KaoS results at densities up to 2-3 n₀, and then introduce the stiffest possible causal EoS to calculate the highest allowed maximum neutron star mass
- KaoS results indicate highest possible neutron star mass of 3 M_{sol}
- The massive pulsar of 2.7 M_{sol} requires an onset of the stiffest possible EoS at a fiducial density of ~2.2 2.5 n_0 .

"Soft equation of state from heavy-ion data and implications for compact stars" I. Sagert, L. Tolos, D.C., J. Schaffner-Bielich and C, Sturm, arXiv: 1112.0234

The CBM (Condensed Baryonic Matter) experiment at FAIR will probe densities beyond 3 n₀, using rare probes such as D-meson and provide better constraints on the maximum neutron star mass.

THANK YOU FOR YOUR ATTENTION!

Copyright Universitätektinikum Herdelberg/Zentrale Politighed

Mass measurements: in eclipsing X-ray Binaries

Mass function:

$$f(M_{\rm D}) = \frac{P(V_x \sin i)^3}{2\pi G} = \frac{(M_D \sin i)^3}{(M_x + M_D)^2}$$

- Doppler shifts of X-ray pulse period $\Rightarrow V_x \sin i$
- Doppler shifts of Companion's spectral features $\Rightarrow V_D \sin i$
 - $\Rightarrow f(M_X)/f(M_D)$
- $eclipse \Rightarrow sin i \sim l$

Radial velocity of X-ray pulsar

Radial velocity of optical companion

Delayiro Delay

ass

n. e o the

lelay

ted to y 2 nes nt of

Credit: Bill Saxton/NRAO

• If there is just one pulsar in the system, it is only possible to measure the mass ratio of a pulsar to its companion M_p/M_c

• If the system is nearly edge on, as the pulse train passes close to the companion, it experiences *Shapiro* delay in the pulses.

• The magnitude and duration of the delay episode is related to the inclination of the binary orbit to the line of sight, and the mass of the companion.

• This completely determines the mass of the pulsar.

Nuclesen meniperonstants

$$\mathcal{L} = \sum_{B} \bar{\psi}_{B} (i\gamma_{\mu}\partial^{\mu} - m_{B} + g_{\sigma B}\sigma - g_{\omega B}\gamma_{\mu}\omega^{\mu} - \frac{1}{2}g_{\rho B}\gamma_{\mu}\tau_{B} \cdot \rho^{\overline{\mu}})\psi_{B} + \frac{1}{2}(\partial_{\mu}\sigma\partial^{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}) - U(\sigma) - \frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\rho_{\mu\nu} \cdot \rho^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu} \cdot \rho^{\mu} + \mathcal{L}_{YY} + \sum_{e^{-},\mu^{-}}\bar{\psi}_{\lambda}(i\gamma_{\mu}\partial^{\mu} - m)\psi_{\lambda}.$$
where, $U(\sigma) = \frac{1}{3}bm_{N}(g_{\sigma N}\sigma)^{3} + \frac{1}{4}c_{0}g_{\sigma N}\sigma)^{4}.$

Properties of asymmetric nuclear matter at Saturation

*** saturation density n₀ = 0.17 fm⁻³ n = 0.16 fm⁻³, B/A = -16.3 MeV,
 *** bindling=endergyMpeV nucleon B/A = -16.3 MeV

* $incom/pmesslbaty0.K_o = 200-250 MeV$

* synKinter QOerderg MESym = 32.5 MeV

* effective nucleon mass $m^*/m = 0.55 - 0.8$

 $\langle \bullet \rangle$

TM1 Model

$$\mathcal{L} = \sum_{B} \bar{\Psi}_{B} \left(i\gamma_{\mu} \partial^{\mu} - m_{B} + g_{\sigma B} \sigma - g_{\omega B} \gamma_{\mu} \omega^{\mu} - g_{\rho B} \gamma_{\mu} \mathbf{t}_{B} \cdot \boldsymbol{\rho}^{\mu} \right) \Psi_{B}$$

$$+ \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} \right) - U(\sigma) + U(\omega)$$

$$- \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - \frac{1}{4} \boldsymbol{\rho}_{\mu\nu} \cdot \boldsymbol{\rho}^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \boldsymbol{\rho}_{\mu} \cdot \boldsymbol{\rho}^{\mu}.$$

$$U(\sigma) = \frac{1}{3}b\sigma^3 + \frac{1}{4}c\sigma^4$$

$$U(\omega) = \frac{1}{4} d(\omega_{\mu} \omega^{\mu})^2,$$

Nuclear equations of state

Phenomenological:

$$U(n_b) = \frac{A}{2} \left(\frac{n_b}{n_0}\right) + \frac{B}{\sigma + 1} \left(\frac{n_b}{n_0}\right)^{\sigma}$$

$$E_{sym}(n_b) \sim S_0 \left(\frac{n_b}{n_0}\right)^{\alpha}$$

• BE=-16 MeV, $n_0 \sim 0.16 \text{ fm}^{-3}$
• $K_0 = (160 - 240) \text{ MeV}$
• $S_0 = (28 - 32) \text{ MeV}, \alpha = 0.7 - 1.1$

Skyrme and rel. mean field:

	<i>S</i> ₀ [MeV]	<i>K</i> ₀ [MeV]
Bsk8 (NPA 750 (2005))	28.0	230.2
Sly4 (NPA 635 (1998))	32.0	229.9
TM1 (NPA 579 (1994))	36.9	281

 $\langle \bullet \rangle$