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Outline

Measurement of neutron emission from electromagnetic dissociation of Pb nuclei
with the ALICE Zero Degree Calorimeters at

√
sNN = 2.76 TeV

Evaluate cross sections for:
I single EM dissociation
I mutual EM dissociation
I hadronic collisions

Comparison with Relativistic ELectromagnetic DISsociation model
[I.A. Pshenichnov et al. Phys.Rev. C 60 044901(1999)], [I.A. Pshenichnov, Phys. Part. Nuclei 42 215 (2011)]

I describes EMD of ultra-relativistic nuclei including:
I single and double virtual photon absorption by nuclei
I intranuclear cascades of produced hadrons
I statistical decay of excited residual nuclei

I good description of data at SPS energies
[M.B. Golubeva et al., Phys.Rev. C 71, 024905 (2005)]
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ALICE: the dedicated heavy-ion experiment at LHC

114

114

Side A

Side C

Central barrel (|η|<1) in a solenoidal field. Excellent tracking and PID capabilities
Forward muon spectrometer (2.5<η<4)
Forward detectors (|η|>3) to characterize the collision
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The ALICE Zero Degree Calorimeters
Placed at 0° w.r.t LHC axis, ~114 m far from IP on both sides (A and C)

I 2 neutron calorimeters (ZNA and ZNC) placed between the beam pipes |η |> 8.7
I 2 proton calorimeters (ZPA and ZPC) close to the outgoing beam pipe
I 2 small electromagnetic calorimeters (ZEM1, ZEM2) placed at ~7.5 m from the IP,

at ±8 cm from LHC axis, only on A side covering 4.8 < η < 5.7

ZDC ALICE IP

114 m

SIDEC

ZP

Sketch view of A side

7 m

ZN

ZNA

Pb
n Pb

I ZN are spaghetti calorimeters in W alloy
I Detection of Cherenkov light in quartz fibers
I Fast response and radiation hardness
I Dimensions: 7 ·7 ·100 cm3

ICFP 2012 P. Cortese for the ALICE Collaboration 4/22



The ALICE Zero Degree Calorimeters
Placed at 0° w.r.t LHC axis, ~114 m far from IP on both sides (A and C)

I 2 neutron calorimeters (ZNA and ZNC) placed between the beam pipes |η |> 8.7
I 2 proton calorimeters (ZPA and ZPC) close to the outgoing beam pipe
I 2 small electromagnetic calorimeters (ZEM1, ZEM2) placed at ~7.5 m from the IP,

at ±8 cm from LHC axis, only on A side covering 4.8 < η < 5.7

ZDC ALICE IP

114 m

SIDEC

ZP

Sketch view of A side

7 m

ZN

ZPA ZNA

p
Pb

n Pb

I ZN are spaghetti calorimeters in W alloy
I Detection of Cherenkov light in quartz fibers
I Fast response and radiation hardness
I Dimensions: 7 ·7 ·100 cm3

ICFP 2012 P. Cortese for the ALICE Collaboration 4/22



The ALICE Zero Degree Calorimeters
Placed at 0° w.r.t LHC axis, ~114 m far from IP on both sides (A and C)

I 2 neutron calorimeters (ZNA and ZNC) placed between the beam pipes |η |> 8.7
I 2 proton calorimeters (ZPA and ZPC) close to the outgoing beam pipe
I 2 small electromagnetic calorimeters (ZEM1, ZEM2) placed at ~7.5 m from the IP,

at ±8 cm from LHC axis, only on A side covering 4.8 < η < 5.7

ZDC ALICE IP

114 m

SIDEC

ZP

Sketch view of A side

7 m

ZEM
ZN

ZPA ZNA

p
Pb

n Pb

I ZN are spaghetti calorimeters in W alloy
I Detection of Cherenkov light in quartz fibers
I Fast response and radiation hardness
I Dimensions: 7 ·7 ·100 cm3

ICFP 2012 P. Cortese for the ALICE Collaboration 4/22



The ALICE Zero Degree Calorimeters
Placed at 0° w.r.t LHC axis, ~114 m far from IP on both sides (A and C)

I 2 neutron calorimeters (ZNA and ZNC) placed between the beam pipes |η |> 8.7
I 2 proton calorimeters (ZPA and ZPC) close to the outgoing beam pipe
I 2 small electromagnetic calorimeters (ZEM1, ZEM2) placed at ~7.5 m from the IP,

at ±8 cm from LHC axis, only on A side covering 4.8 < η < 5.7

ZDC ALICE IP

114 m

SIDEC

ZP

Sketch view of A side

7 m

ZEM
ZN

ZPA ZNA

p
Pb

n Pb

I ZN are spaghetti calorimeters in W alloy
I Detection of Cherenkov light in quartz fibers
I Fast response and radiation hardness
I Dimensions: 7 ·7 ·100 cm3

ICFP 2012 P. Cortese for the ALICE Collaboration 4/22



Electromagnetic processes
Two nuclei have impact parameter larger than the sum of the nuclear radii
⇒ interaction via long-range electromagnetic forces

Interaction can be described by the Weizsäcker and Williams equivalent photon method

Lorentz contracted electric field described by a photon flux
I proportional to Z 2

I increasing ∝ γ2 and hardening

Main processes:

I bound-free electron-positron pair production
I electromagnetic dissociation (EMD)

I nucleus excitation followed by break-up
I GDR excitation followed by neutron emission

dominant channel for heavy nuclei

Cross sections for EM processes exceed hadronic for Pb-Pb at LHC
[R. Bruce et al., Phys.Rev. 12 071002 (2009)]

Limit to heavy ion beam lifetime
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A matter of definitions. . .
Single electromagnetic dissociaton

I at least one neutron (1n) is emitted by a given Pb nucleus disregarding the fate
of the other nucleus

I small signal in ZEM

A1

A2 A2

E2

Elastic

Inelastic A⋆
1 A1 A1

E1

A2 A⋆
2 A⋆

2

E2

Elastic

ElasticInelastic

Inelastic A⋆
1

Mutual electromagnetic dissociation
I at least 1n is emitted by both Pb nuclei
I subprocess of single EMD
I small signal in ZEM

A1 A1

E1

A2 A⋆
2 A⋆

2

E2

Elastic

ElasticInelastic

Inelastic A⋆
1

Hadronic interaction
I impact parameter < R1 +R2
⇒ strong interaction

I spectator neutrons emitted
from both nuclei
⇒ signal in both ZN

I large signal in ZEM

Spectator nucleons

Spectator nucleons

ZDC

ZDC

ZEM
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Dedicated data taking with ElectroMagnetic Dissociation trigger
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arXiv:1203.2436

Require a minimum energy deposition of
∼ 500 GeV in ZNA or ZNC
∼ 3σ below 1n energy deposition

Collecting events where at least one
neutron is detected:

I by one calorimeter or the other
I by both calorimeters

Selecting electromagnetic and hadronic
processes
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van der Meer scan
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ALICE Performance   20/05/2011

Beam separation (van der Meer) scan to
measure the cross section for EMD trigger:

σ
vdM
ZNA or ZNC = 371.4±0.6 (stat.)+24

−19 (syst.) b

Systematic errors of −5.2%+6.4% can
be decomposed as follows:

I 4.3% uncertainty coming from the
vdM scan analysis

I calibration of the distance scale
during the scan

I −3%+4.7% uncertainty coming
from the measurement of the
beam intensity

I beam current transformers scale
I non-colliding (ghost) charge

fraction in the LHC beams

The cross section for any process measured in a data taking with the EMD trigger can
be related to this cross section:

σproc = σ
vdM
ZNA or ZNC ·

Nproc

NZNA or ZNC · εproc
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First event selection: single EMD + hadronic
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↙Signal only in the
other calorimeter

Signal in ZNA

arXiv:1203.2436

Select all processes involving neutron emission
I single EMD (mutual is a subset of single!)
I hadronic collisions

Two independent estimates of the number of events
from single EMD + hadronic processes
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Cross sections for Pb-Pb
√

sNN = 2.76 TeV

Physical Process Data (b) RELDIS (b)
single EMD + hadronic 194.8±0.3 stat. +13.6

−11.5 syst. 192.9±9.2
single EMD - mutual EMD 181.3±0.3 stat. +12.8

−10.9 syst. 179.7±9.2

mutual EMD 6.3±0.1 stat. ±0.4 syst. 5.5±0.6
hadronic 7.7±0.1 stat. +0.6

−0.5 syst. 7.7±0.4

single EMD 187.4±0.2 stat. +13.2
−11.2 syst. 185.2±9.2

Systematic errors take into account:
I uncertainties of the cross sections measured during the vdM scan (dominant)
I difference between the response of ZNA and ZNC (0.1−0.2%)
I subtraction of beam-gas background (∼ 1%)

Single EMD cross section estimated from the average of:
I (single EMD + hadronic) − hadronic
I (single EMD − mutual EMD) + mutual EMD
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Second event selection: single EMD - mutual EMD
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• Require a signal over thresold in one calorimeter
and not on the other side

⇒ hadronic events, which always lead to
disintegration of both colliding nuclei,
are rejected

⇒ mutual EMD events are also removed from the
spectrum

Two independent estimates of the number of events
from single EMD - mutual EMD

Study neutron multiplicities (1n, 2n, 3n. . . events) in
EMD processes without the background from
hadronic collisions
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Fit to EMD spectra
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ZNA energy spectrum requiring signal over threshold in

ZNA but not in ZNC

Spectra fitted with the sum of 4 gaussians
I 1n peak (3 free parameters):

normalization, µ1n and σ1n
I 2n, 3n, 4n peaks

I free normalization,
I µin = i×µ1n

I σin =
√

i× (σ2
1n−σ2

ped)+σ2
ped

I σped extracted from fit to 0n events
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Neutron multiplicities

Neutron emission fractions for single EMD minus mutual EMD process

Ratio Data(%) RELDIS(%)
1n/Ntot 51.5±0.4 stat.±0.2 syst. 54.2±2.4
2n/Ntot 11.6±0.3 stat.±0.5 syst. 12.7±0.8
3n/Ntot 3.6±0.2 stat.±0.2 syst. 5.4±0.7
2n/1n 22.5±0.5 stat.±0.9 syst. 23.5±2.5

1n and 2n emission channels give the main contribution (63%)

⇒ EMD processes proceed predominantly via GDR excitation and subsequent decay

2n/1n in Pb-Pb

LHC
√

s = 2.76 TeV⇒ 22.5±0.9% in single EMD minus mutual

SPS
√

s = 7.6 GeV⇒ 19.7±2.9% in single EMD

Slight increase increase of the 2n to 1n ratio with collision energy

According to RELDIS is due to hardening of photon spectra
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Mutual EMD + hadronic
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Separation of electromagnetic and
hadronic contributions using ZEM
calorimeters

Energy threshold for each ZEM ∼ 10 GeV
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Mutual EMD + hadronic
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I no signal in any ZEM calorimeter
⇒ mutual EMD

I signal in at least one ZEM
⇒ hadronic events
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Mutual EMD + hadronic
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I no signal in any ZEM calorimeter
⇒ mutual EMD

I signal in at least one ZEM
⇒ hadronic events
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Removing cross contamination

The ZEM trigger efficiencies are estimated with Monte-Carlo:

I εmutual =96.0% ± 0.1%(stat.) ± 0.6%(syst.) for mutual EMD event selection
I εhadronic =92.4% ± 0.3%(stat.) ± 1.0%(syst.) for hadronic event selection

There is therefore a small cross contamination due to mis-identification:{
Nmutual ,observed = εmutual ·Nmutual +(1− εhadronic) ·Nhadronic

Nhadronic,observed = (1− εmutual ) ·Nmutual + εhadronic ·Nhadronic

By solving this system⇒ extract the true number of mutual EMD and hadronic events

Finally correct for trigger probability:

I for mutual EMD: 95.7% ± 0.07%(stat.) ± 0.5%(syst.)
I for hadronic events: 97.0% ± 0.2%(stat.) ± 3%(syst.)
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Cross sections for Pb-Pb
√

sNN = 2.76 TeV

Physical Process Data (b) RELDIS (b)
single EMD + hadronic 194.8±0.3 stat. +13.6

−11.5 syst. 192.9±9.2
single EMD - mutual EMD 181.3±0.3 stat. +12.8

−10.9 syst. 179.7±9.2

mutual EMD 6.3±0.1 stat. ±0.4 syst. 5.5±0.6
hadronic 7.7±0.1 stat. +0.6

−0.5 syst. 7.7±0.4

single EMD 187.4±0.2 stat. +13.2
−11.2 syst. 185.2±9.2

Systematic errors take into account:
I uncertainties of the cross sections measured during the vdM scan (dominant)
I difference between the response of ZNA and ZNC (0.1−0.2%)
I subtraction of beam-gas background (∼ 1%)

Single EMD cross section estimated from the average of:
I (single EMD + hadronic) − hadronic
I (single EMD − mutual EMD) + mutual EMD
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Energy dependence of EMD cross sections

Total single EMD cross sections
and partial EMD cross sections as
a function of the effective Lorentz
factor γeff = 2γ2−1
i.e. γ of a nucleus in the rest frame
of the other

Solid lines are the RELDIS
predictions
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Good description by the model despite of six orders-of-magnitude span of γeff
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Conclusions

I We studied the impact on nuclear matter of the strongest electromagnetic fields
experimentally available by studying Pb-Pb collisions at 2.76 A TeV

I We measured the cross sections for EMD processes by detecting the emitted
neutrons with the ZDCs and measuring the absolute cross section in a Van der
Meer scan

I We performed the first combined analysis of single and mutual electromagnetic
dissociation

I Experimental results validate the theoretical predictions and will help to better tune
the models

I The ZDCs provide an independent monitor of the beam luminosity measuring the
rate of neutron emission by EMD processes

L = RateEMD/σvEMD
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Thanks for your attention



Backup. Event selection for mutual EMD and hadronic collisions

interactionsfromIP

Zvertex

ti
m
e

I Events corresponding to interaction
between main bunch with satellite bunches
can be identified using the ZN timing
information

I not all satellite events are synchronized
with the ADC gate ZEM signal is not
correctly integrated in some cases

I select only events from IP rejecting events
from satellite bunch interactions:

I 3.8% events from mutual EMD sample and
I 2.6% events from the hadronic sample are

removed
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