
Heavy-ion physics for beginners (I)

Wojciech Florkowski1,2

1 Jan Kochanowski University, Kielce, Poland
2 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

International Conference on New Frontiers in Physics
10-16 June 2012 Kolymbari, Crete, Greece

W. Florkowski (UJK / IFJ PAN) URHIC June 7, 2012 1 / 79



Outline

Outline

1. Introduction
1.1 High-energy nuclear collisions
1.2 Theoretical methods
1.3 Quantum chromodynamics
1.4 Quark-gluon plasma

2. Basic Dictionary
2.1 Participants, spectators, and impact parameter
2.2 Kinematical variables
2.3 Centrality
2.4 Reaction plane
2.5 Collective flows
2.6 Stopping and transparency
2.7 Boost invariance

W. Florkowski (UJK / IFJ PAN) URHIC June 7, 2012 2 / 79



Outline

Outline

3. Glauber Model
3.1 Eikonal approximation
3.2 Nucleon-nucleon collisions
3.3 Nucleon-nucleus collisions
3.4 Nucleus-nucleus collisions
3.5 Wounded nucleons
3.6 Soft and hard processes
3.7 Wounded nucleon model
3.8 Nuclear modification factor

4. Space-time picture of URHIC
4.1 Particle production processes
4.2 Thermalization
4.3 Hydrodynamic expansion
4.4 Thermal freeze-out
4.5 Chemical freeze-out
4.6 Hanbury Brown-Twiss interferometry

5. CONCLUSIONS

W. Florkowski (UJK / IFJ PAN) URHIC June 7, 2012 3 / 79



Outline

hydro expansioninitial conditions
hadronic

freeze-out

thermalization

STANDARD MODEL HMODULESL of HEAVY-ION COLLISIONS

Glauber or CGC perfect or viscous free-streaming or hadronic cascade

NEW: FLUCTUATIONS IN THE INITIAL STATE � EVENT-BY-EVENT HYDRO � FINAL-STATE FLUCTUATIONS

EQUATION OF STATE?

VISCOSITY?

W. Florkowski (UJK / IFJ PAN) URHIC June 7, 2012 4 / 79



1. INTRODUCTION

1. INTRODUCTION

W. Florkowski (UJK / IFJ PAN) URHIC June 7, 2012 5 / 79



1. INTRODUCTION 1.1 High-energy nuclear collisions

1.1 High-energy nuclear collisions
Physics of the ultra-relativistic heavy-ion collisions is an interdisciplinary field which connects
the high-energy physics of elementary particles with the nuclear physics. There exist also
connections to astrophysics and cosmology.

The name “heavy-ions” is used for heavy atomic nuclei, whereas the term “ultra-relativistic
energy” denotes the energy regime where the kinetic energy exceeds significantly the rest
energy (I use natural units where c = ~ = kB = 1).

Elab � A

projectile target

Elab/A� mN ∼ 1 GeV. (1)

Elab – energy in the lab, A – atomic number, mN – nucleon mass.

In the case of colliders, we speak more often about the energy in the center-of-mass frame per
nucleon pair.

sNN

center-of-mass frame

√
sNN � mN ∼ 1 GeV. (2)
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1. INTRODUCTION 1.1 High-energy nuclear collisions

1.1 High-energy nuclear collisions
In 2000 the first data from the Relativistic Heavy Ion Collider (RHIC) at BNL were collected.
During the first run, the maximum energy of 130 GeV per nucleon pair was achieved. In the next
years new runs took place with the maximum energy of 200 GeV per nucleon pair. One of those
runs was devoted to the study of the deuteron-gold collisions which were analyzed in order to get
the proper reference point for the more complicated gold on gold collisions.

Satellite view of RHIC and BNL (Long Island, New York, USA).
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1. INTRODUCTION 1.1 High-energy nuclear collisions

1.1 High-energy nuclear collisions

The main activity in the field is connected now with Large Hadron Collider (LHC) at CERN (Pb
on Pb reactions at

√
sNN = 2.76 TeV, start Nov.-Dec., 2010).

Aerial view of CERN and Geneva (Switzerland).

Nevertheless, the performance of new experiments at lower energies is also very important,
since this allows us to study the energy dependence of many characteristics of the particle
production, and direct searches for new phenomena, NA61 at CERN, STAR at BNL.
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1. INTRODUCTION 1.2 Theoretical methods

1.2 Theoretical methods

In the ultra-relativistic heavy-ion collisions very large numbers of particles are produced (we deal
with so called large particle multiplicities).

For example, in the central Au+Au collisions at RHIC, at the highest beam energy√
sNN = 200 GeV, the total charged particle multiplicity is about 5000. Hence, the number of

produced particles exceeds the number of initial nucleons by a factor of 10.

In this situation, different theoretical methods are used, which are suitable for description of large
macroscopic systems, e.g., thermodynamics, hydrodynamics, kinetic (transport) theory,
field theory at finite temperature and density, non-equilibrium field theory, Monte-Carlo
simulations.

... we also know the underlying fundamental theory!
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1. INTRODUCTION 1.3 Quantum Chromodynamics

1.3 Quantum Chromodynamics: asymptotic freedom

Feynman and Bjorken argued that high-energy experiments should reveal the existence of
partons, i.e., particles that are parts of hadrons, suggestions spectacularly verified in the deep
inelastic scattering of electrons on protons, the experiments carried out at the Stanford Linear
Accelerator Center (SLAC) in 1969. The partons were identified with quarks.

1973 – the discovery of asymptotic freedom in the strong interactions by Gross, Politzer, and
Wilczek allowed for making precise predictions of the results of many high-energy experiments in
the framework of the perturbative quantum field theory — the asymptotic freedom is the property
that the interaction between particles becomes weaker at shorter distances.

1975 – Collins and Perry argued that “superdense matter (found in neutron-star cores, exploding
black holes, and the early big-bang universe) consists of quarks rather than of hadrons”.
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1. INTRODUCTION 1.3 Quantum Chromodynamics

1.3 Quantum Chromodynamics

1975 – Cabibbo and Parisi identified the limiting Hagedorn temperature with the temperature of
the phase transition from hadronic to quark matter, they also sketched the first phase diagram of
strongly interacting matter.
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m@GeVD
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Log10HNL

mesons

baryons

Hadron mass spectrum grows like em/TH where
TH is the Hagedorn temperature, in this case
there is a limiting temperature for hadrons,
integrals over m of the expressions such as
em/TH−

√
m2+p2/T diverge if T ≥ TH !

W. Broniowski and WF, different TH for baryons
and mesons (see figure)

T →∞, density grows like T 3, inter-particle distance ∼ 1/T → 0, weakly interacting system!

Gauge theories at finite temperature:
Kislinger and Morley (1975), Freedman and McLerran (1976),
Shuryak introduced in 1978 the name quark-gluon plasma (QGP),
Kapusta (1979), ...
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1. INTRODUCTION 1.3 Quantum Chromodynamics

1.3 Quantum Chromodynamics: confinement

Probably the most striking feature of QCD is the color confinement, which is the other side of
the asymptotic freedom. This is the phenomenon that color charged particles (such as quarks
and gluons) cannot be isolated as separate objects. In other words, quarks and gluons cannot be
directly observed. The physical concept of confinement may be illustrated by a string which is
spanned between the quarks when we try to separate them. If the quarks are pulled apart too far,
large energy is deposited in the string which breaks into smaller pieces.

q

q q

q q q qq
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1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma

The main challenge of the ultra-relativistic heavy-ion collisions is the observation of the
deconfinement phase transition.

As we have mentioned above, at Earth conditions (i.e., at low energy densities) quarks and
gluons are confined in hadrons. However, with increasing temperature (heating) and/or
increasing baryon density (compression), a phase transition may occur to the state where
the ordinary hadrons do not exist anymore; quarks and gluons become the proper
degrees of freedom, and their motion is not confined to hadrons.
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1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma: equation of state

massless gluons (Stefan-Boltzmann’s law)

εg = 16
π2

30
T 4, Pg =

1
3
εg

massless quarks

εq + ε q = 6Nf

 
7π2

120
T 4 +

1
4
µ2T 2 +

1
8π2

µ4

!
,

Pq + P q =
1
3

`
εq + εq

´
µ is one third of the baryon chemical potential µB , µ = 1

3µB
WEAKLY INTERACTING GAS of quarks and gluons, B – bag constant

εqgp = εg(T ) + εq(T , µ) + ε q(T , µ)+B

or
Pqgp = Pg(T ) + Pq(T , µ) + P q(T , µ)−B
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1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma: naive phase transition
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1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma: lattice QCD simulations

Calculations done at zero baryon chemical potential, µB = 0 !
sound velocity c2

s (T ) = ∂P
∂ε

drops to zero at the first order phase transition
stays large at the crossover phase transition
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lattice simulations of QCD done by the Budapest-Wuppertal group (Z. Fodor et al.),
figure – connecting hadron-resonance gas with LQCD by M. Chojnacki and WF (2007)
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1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma: phase diagram

T
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2. BASIC DICTIONARY 2.1 Participants, spectators, and impact parameter

2.1 Participants, spectators, and impact parameter
At very high energies, simple geometric concepts are often used, for example, one separates so
called participants from spectators — if we assume that all nucleons propagate along parallel,
straight line trajectories, then the nucleons which do not meet any other nucleons on their way
are called spectators. Other nucleons which interact with each other are called participants.

The participants which suffered at least one inelastic collision are called the wounded nucleons.

A two-dimensional vector connecting centers of the colliding nuclei in the plane transverse to the
nucleon trajectories is called the impact vector, and its length is the impact parameter.

In particle as well as in nuclear physics it is practical to introduce a coordinate system, where the
spatial z-axis is parallel to the beam of the accelerator, and where the impact vector b points in
x-direction. The two axes, x and z, span the reaction plane of a given collision.

b

®

spectators

participants

spectators

participants
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.1 Kinematical variables: transverse mass

The component of a three-vector A parallel to z-axis is usually denoted by A‖, and the
transverse component is A⊥ = A− A‖. The transverse mass of a particle is defined as

m⊥ =
q

m2 + p2
⊥, (3)

where m and p are the particle’s mass and three-momentum 1.

The measured m⊥-distribution of the produced particles is typically of the exponential form (for
not too large transverse momenta, p⊥ < 1–2 GeV)

dN
2πm⊥ dm⊥

= A exp (−m⊥/λ) . (4)

The two parameters A and λ are obtained from the fits to the experimental data.

1The “transverse” quantities are sometimes denoted by the subscript T , e.g., mT or pT .
The “longitudinal” quantities are then denoted by the subscript L, e.g., pL.
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.1 Kinematical variables: transverse mass

The measurements done by the NA49
Collaboration at CERN. The transverse-mass
spectra of π−, K +, and K− at midrapidity
(|y| < 0.1 for kaons and 0 < y < 0.2 for pions)
in the central Pb+Pb collisions at the energy
Elab = 40 A GeV (triangles), 80 A GeV
(squares), and 158 A GeV (circles). The lines
are the exponential fits to the spectra in the
interval 0.2 GeV < mT −m < 0.7 GeV. The
values for 80 A GeV and 158 A GeV are
rescaled by the factors of 10 and 100,
respectively.
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: rapidity

Since we deal with relativistic energies, it is useful to use the rapidity instead of the standard
velocity

y = 1
2 ln

(E+p‖)

(E−p‖)
= arctanh

“ p‖
E

”
= arctanh

`
v‖
´
. (5)

Here E is the energy of a particle, E =
p

m2 + p2, and v‖ = p‖/E is the longitudinal component
of the velocity. Rapidity is additive under Lorentz boosts along the z-axis.

Using the rapidity and the transverse mass, we can calculate the energy and the longitudinal
momentum of a particle from the equations

E = p0 = m⊥ cosh y (6)

and
p‖ = m⊥ sinh y. (7)
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: rapidity

The measurements done by the NA49
Collaboration at CERN. The rapidity
distributions of π−, K +, and K− in the central
Pb+Pb collisions at the energy Elab = 40 A
GeV, 80 A GeV, and 158 A GeV. The closed
symbols indicate the measured points, whereas
the open points are reflection of the measured
points with respect to the axis y = 0.
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: rapidity

The measurement of the BRAHMS
Collaboration at BNL (Au+Au collisions at√

sNN = 200 GeV, the most central events).
Rapidity distributions (a) and average
transverse momenta (b) of charged pions,
charged kaons, protons and antiprotons.
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: pseudorapidity

In the similar way one defines the pseudorapidity variable η, namely

η = 1
2 ln

(|p|+p‖)

(|p|−p‖)
= ln

“
cot θ2

”
= − ln

“
tan θ

2

”
, (8)

where θ is the scattering angle. In analogy to Eqs. (6) and (7) we have

|p| = p⊥ cosh η (9)

and
p‖ = p⊥ sinh η. (10)
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: pseudorapidity

Pseudorapidity distributions of the charged
particles measured by the PHOBOS
Collaboration in Au+Au collisions at

√
sNN =

130 GeV. The measurements were done for six
different centrality classes (the latter will be
defined precisely below).
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: rapidity vs. pseudorapidity

In the limit m −→ 0, the rapidity and the pseudorapidity become equal. For finite masses the
relations between the rapidity and the pseudorapidity are more complicated

y =
1
2

ln

264
q

p2
⊥cosh2 η + m2 + p⊥sinh ηq

p2
⊥cosh2 η + m2 − p⊥sinh η

375 , (11)

η =
1
2

ln

264
q

m2
⊥cosh2 y−m2 + m⊥sinh yq

m2
⊥cosh2 y−m2 −m⊥sinh y

375 . (12)

Equations (11) or (12) can be used to find a connection between the rapidity distribution of
particles and the pseudorapidity distribution

dN
dη d2p⊥

=

s
1−

m2

m2
⊥cosh2 y

dN
dy d2p⊥

=
|p|
E

dN
dy d2p⊥

. (13)
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: central rapidity region

In the center-of-mass frame, the region of the phase-space where y ≈ η ≈ 0 is called the central
rapidity region or the midrapidity region. On the other hand, the regions corresponding to the
initial rapidities of the projectile and target (y ≈ yP , y ≈ yT ) are called the projectile and target
fragmentation regions, respectively.

y=0y=yT y=yP

central region

target fragmentation
region

projectile fragmentation
region

baryon density

T P

W. Florkowski (UJK / IFJ PAN) URHIC June 7, 2012 28 / 79



2. BASIC DICTIONARY 2.3 Centrality

2.3 Centrality

Archers shoot randomly at the target. The black dots describe their results. Knowing the rewards
given to the archers we are able to conclude about the size of the bull’s-eye of the target.
Similarly, in the heavy-ion experiment we can make an estimate of the size of the overlapping
region of two nuclei, if the number of the produced particles (a reward in this case) is a
monotonic function of this size.
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2. BASIC DICTIONARY 2.4 Reaction plane

2.4 Reaction plane

In particle as well as in nuclear physics it is practical to introduce a coordinate system, where the
spatial z-axis is parallel to the beam of the accelerator, and where the impact vector b points in
x-direction. The two axes, x and z, span the reaction plane of a given collision.

z

y

x

b

projectile

target
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2. BASIC DICTIONARY 2.5 Collective flows

2.5 Collective flows

At present the extraction of the reaction (participant) plane is one aspect of the very advanced
flow analysis of the collisions. In this type of the investigations one represents the momentum
distribution of the produced particles in the form

dN
dyd2p⊥

= dN
2πp⊥dp⊥dy

»
1 +

∞P
k=1

2vk cos (k(φp −Ψk ))

–
, (14)

where Ψk is the reference angle defined by the condition 〈sin(kΨk )〉 = 0, where the averaging is
done over all particles in one event.

Until very recently it has been common to assume Ψk = ΨRP.

Averaging of (14) over the azimuthal angle gives the transverse-momentum distribution (4). The
coefficients vk characterize the momentum anisotropy. The coefficient v1 is called the directed
flow, whereas the coefficient v2 is called the elliptic flow. In general, the coefficients vk are
functions of rapidity and transverse momentum, vk = vk (y, p⊥), and in this form often called the
k th harmonic differential flow.
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2. BASIC DICTIONARY 2.5 Collective flows

2.5.1 Collective flows: directed flow

Schematic view of the directed flow observed at relativistic energies. For positive and large
rapidities (y ∼ yP ) the spectators are deflected towards positive values of x . For positive and
small rapidities (y ≥ 0) the produced particles have negative v1, hence they are deflected
towards negative values of x .
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2. BASIC DICTIONARY 2.5 Collective flows

2.5.2 Collective flows: elliptic flow

In non-central collisions the region of the particle production has an almond shape in the
transverse plane. Due to the interaction of the produced particles the spatial asymmetry leads to
the azimuthal asymmetry of the momentum distributions. At ultra relativistic energies, the
expansion is stronger in the reaction plane — the produced matter is not blocked by spectators.
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2. BASIC DICTIONARY 2.6 Stopping and transparency

2.6 Stopping and transparency

The relativistic heavy-ion collisions can proceed in two different ways. In the collisions with large
stopping power the baryons from the colliding nuclei are stopped in the middle of the reaction
zone, and a dense baryon-rich matter is produced at midrapidity. On the other hand, in the
transparent collisions (negligible stopping) the initial baryons are not slowed down, and the two
baryon-rich regions are separated from each other.

y=0y=yT y=yP

central region

target fragmentation
region

projectile fragmentation
region

baryon density

T P
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2. BASIC DICTIONARY 2.6 Stopping and transparency

2.6 Stopping and transparency

The net-proton distributions measured in
different experiments.
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2. BASIC DICTIONARY 2.7 Boost invariance

2.7 Boost invariance

Generally speaking, boost-invariance is the symmetry of the physical systems with respect to
Lorentz boosts along the beam axis. It imposes special constraints on the form of the physical
quantities.

For example, the thermodynamic functions used in the relativistic hydrodynamics, such as
temperature, pressure, or the energy density, are Lorentz scalars. The boost-invariance in this
cases means that they may depend only on the transverse coordinates and the longitudinal
proper time τ =

p
t2 − z2.

Similarly, the rapidity distribution dN/dy is boost-invariant if it is independent of rapidity.
The longitudinal flow has the scaling form

vz = z
t . (15)
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3. GLAUBER MODEL

3. GLAUBER MODEL

Roy Glauber
receiving Nobel Prize

Stockholm, Dec. 2005.
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3. GLAUBER MODEL

In realistic situations the separation between spectators and participants is not so sharp as in the
simple geometric picture introduced earlier.

A more elaborate estimate of the number of participating nucleons can be done within the
Glauber model which treats a nucleus-nucleus collision as a multiple nucleon-nucleon
collision process.

In the Glauber model, the nucleon distributions in nuclei are random and given by the
nuclear density profiles

whereas the elementary nucleon-nucleon collision is characterized by the total inelastic
cross section σin.

Σin
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3. GLAUBER MODEL

Initially, the Glauber model was applied only to elastic collisions. In this case a nucleon
does not change its properties in the individual collisions, so all nucleon interactions can be well
described by the same cross section.

Applying the Glauber model to inelastic collisions, we assume that after a single inelastic
collision an excited nucleon-like object is created that interacts basically with the same
inelastic cross section with other nucleons.
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3. GLAUBER MODEL 3.1 Eikonal approximation

3.1 Eikonal approximation

Classical approximation to the angular momentum: after replacing l by b we may treat b as the
continuous variable (with db = dl/p and d2b = b db dφ). In this approximation, the scattering
amplitude has the form

f (s,b) =
ip
2π

Z
d2b eiq·b

h
1− eiχ(s,b)

i
, χ(s,b) = 2 δ(s,b). (16)

The total cross section may be obtained from the forward scattering amplitude
with the help of the optical theorem

σtot =
4π
p

Im f (s, t = 0) = 2
Z

d2b
h
1− Re eiχ(s,b)

i
. (17)
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3. GLAUBER MODEL 3.1 Eikonal approximation

3.1 Eikonal approximation

The elastic cross section is obtained by squaring the amplitude and integrating over the solid
angle. Since the scattering is concentrated in the forward direction, the integration over the solid
angle may be replaced by the integral over the space orthogonal to the momentum vector p,

dΩ =
d2q
p2

. (18)

Using this property we obtain

σel =

Z
d2q
4π2

Z
d2b

Z
d2b′eiq·b

h
1− eiχ(s,b)

i
e−iq·b′

h
1− eiχ(s,b′)

i∗
=

Z
d2b

˛̨̨
1− eiχ(s,b)

˛̨̨2
. (19)

Finally, the inelastic cross section is

σin = σtot − σel =
R

d2b
“

1−
˛̨
eiχ(s,b)

˛̨2” ≡ R d2b p(b). (20)
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3. GLAUBER MODEL 3.2 Nucleon-nucleon collisions

3.2.2 Nucleon-nucleon collisions: thickness function

Let us consider a nucleon-nucleon collision at a given energy
√

s and at an impact parameter b.
According to our discussion presented before, we may introduce the probability of having a
nucleon-nucleon inelastic collision

p (b) =

„
1−

˛̨̨
eiχ(b)

˛̨̨2«
≡ t (b)σin. (21)

The function t (b), defined by (21), is called the nucleon-nucleon thickness function. The
integral of p (b) over the whole range of the impact parameter should be normalized to σin.
Thus, the thickness function is normalized to unityZ

d2b t (b) = 1. (22)

For collisions with unpolarized beams t (b) depends only on the magnitude of b.
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3. GLAUBER MODEL 3.3 Nucleon-nucleus collisions

3.3.1 Nucleon-nucleus collisions: density profiles

The probability of finding a nucleon in the nucleus with the atomic mass number A is the usual
baryon density divided by the number of baryons in the nucleus (our definition of ρA(r) includes
A in the denominator, because we want to interpret ρA(r) as the probability distribution.). For
large nuclei, one commonly uses the Woods-Saxon function

ρA(r) =
ρ0

A (1 + exp
h

r−r0
a

i
)
, (23)

with the parameters:
r0 = (1.12A1/3 − 0.86A−1/3) fm, (24)

a = 0.54 fm, (25)

and
ρ0 = 0.17 fm−3. (26)

The parameter ρ0 is the nuclear saturation density.
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3. GLAUBER MODEL 3.3 Nucleon-nucleus collisions

3.3.1 Nucleon-nucleus collisions: density profiles

The nucleon-nucleus thickness function for
the nucleus A is obtained from a simple
geometric consideration (see right) and the
assumption that the nucleon positions in the
nucleus A are not changed during the collision
process,

TA (b) =

Z
dzA

Z
d 2sA ρA(sA, zA) t(sA − b).

(27)
Here the transverse coordinates are denoted by
the vector sA, and we use notation

ρA(sA, zA) = ρA

„q
s2

A + z2
A

«
. (28)

Equation (22) implies the normalization
condition Z

d 2b TA (b) = 1. (29)

W. Florkowski (UJK / IFJ PAN) URHIC June 7, 2012 44 / 79



3. GLAUBER MODEL 3.3 Nucleon-nucleus collisions

3.3.2 Nucleon-nucleus collisions: independent
collisions

The quantity TA (b)σin is the probability that a single nucleon-nucleon collision takes place in a
nucleon-nucleus collision at the impact parameter b. Treating all possible nucleon-nucleon
collisions in the nucleon-nucleus collision as completely independent and characterized by the
same cross section, we easily find the probability of having n such collisions. The latter is
expressed by the binomial distribution

P (n; A; b) =

„
A
n

«
[1− TA (b)σin]A−n [TA (b)σin]n . (30)

The average number of binary nucleon-nucleon collisions may be calculated from (30) which
gives

n (A; b) =
AX

n=1

nP (n; A; b) = A TA (b) σin. (31)
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3. GLAUBER MODEL 3.3 Nucleon-nucleus collisions

3.3.2 Nucleon-nucleus collisions: independent
collisions

Since the scale at which the nucleon-nucleon thickness function varies is typically smaller than
the scale at which the nuclear density changes, we may often replace t(sA − b) in (27) by the
delta function δ(2)(sA − b). In this approximation TA (b) is the nuclear density projected onto the
transverse plane

TA (b) =
R

dzA ρA(b, zA), (32)

and the average number of the collisions is

n (A; b) = Aσin

Z
dzA ρA(b, zA). (33)
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3.4 Nucleus-nucleus collisions

Finally, we define the thickness function for the nucleus-nucleus collision. A geometric
consideration leads to the formula

TAB (b) =
R

dzA
R

d 2sA ρA(sA, zA)
R

dzB
R

d 2sB ρB(sB , zB) t(b + sB − sA), (34)

with the corresponding normalization conditionZ
d 2b TAB (b) = 1. (35)

The quantity TAB (b)σin is the averaged
probability that a nucleon-nucleon collision
takes place in a nucleus-nucleus collision
characterized by the impact parameter b.
In the limit t(b)→ δ(2)(b) we may write

TAB (b) =

Z
d 2sA TA(sA) TB(sA − b).

(36)
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3. GLAUBER MODEL 3.4 Nucleus-nucleus collisions

3.4 Nucleus-nucleus collisions

In a more symmetric form we have

TAB (b) =

Z
d 2s TA

„
s +

1
2

b
«

TB

„
s−

1
2

b
«
. (37)

The nucleus-nucleus thickness function TAB (b) can be used to calculate the probability of having
n inelastic binary nucleon-nucleon collisions in a nucleus-nucleus collision at the impact
parameter b.

P (n; AB; b) =

„
AB
n

«
[1− TAB (b)σin]AB−n [TAB (b)σin]n . (38)

The result for the average number of the collisions is

n (AB; b) = AB TAB (b) σin. (39)
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3. GLAUBER MODEL 3.4 Nucleus-nucleus collisions

3.4.1 ... total inelastic cross section

The total probability of an inelastic nuclear collision is the sum over n from n = 1 to n = AB

Pin (AB; b) =
ABX

n=1

P (n; AB; b) = 1− [1− TAB (b)σin]AB . (40)

From (40), by integrating over the impact parameter space, one may obtain the total inelastic
cross section for the collision of the two nuclei A and B

σAB
in =

R
d2b

“
1− [1− TAB (b)σin]AB

”
. (41)

Using the thickness function for the Au+Au collisions we find σAuAu
in = 6.8 b for σin = 30 mb and

σAuAu
in = 7.0 b for σin = 40 mb. We note that those cross sections are larger than the geometric

cross section σAuAu
geo = 4πR2 ≈ 5πA2/3 = 5.3 b. This is due to the tails of the Woods-Saxon

distribution (23), which make possible that a nucleon-nucleon collision occurs in the nuclear
collision at the impact parameter b larger than 2R.
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3. GLAUBER MODEL 3.4 Nucleus-nucleus collisions

3.4.1 ... total inelastic cross section
We did something wrong! We used the averaged probability for nucleon-nucleon collisions! In
more realistic calculations, the positions of nucleons in the target and projectile nucleus are fixed,
and the averaging is done later. The probability of an inelastic collision for a fixed nucleon
configuration equals

1−
AY

j=1

BY
i=1

h
1− t

“
b + sB

i − sA
j

”
σin

i
. (42)

The probability of an inelastic nuclear collision at the impact parameter b is then

Pin (AB; b) =

Z
d2sA

1 TA(sA
1 ) · · · d2sA

ATA(sA
A)

Z
d2sB

1 TB(sB
1 ) · · · d2sB

B TB(sB
B)

×

8<:1−
AY

j=1

BY
i=1

h
1− t

“
b + sB

i − sA
j

”
σin

i9=; . (43)

The integration of (43) over b gives σAB
in . Equations (40) and (43) differ from each other! The

more accurate formula (43) is much more complicated to handle and cannot be simply reduced
to (40). Only for nucleon-nucleus collisions the two methods are equivalent. Since there is no
good analytic method to evaluate (43) for large values of A and B, one is most often satisfied with
Eqs. (40) and (41) only. These equations are called the optical limit of the Glauber model.
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3.5 Wounded nucleons

The Glauber model can be used also to calculate the number of the participants. To be more
precise we distinguish between the participants which may interact elastically and the
participants which interact only inelastically. The latter are called the wounded nucleons.

The number of nucleons in the nucleus A

A
Z

d2s TA(s). (44)

Probability, that the nucleus from A at the position s collides one or more times with the nucleons
in B (in an AB collision at the impact parameter b)

BX
n=1

P (n; B; b− s) = 1− [1− σinTB (b− s)]B .

(45)

The number of wounded nucleons in A is

wA (A; B; b) = A
Z

d2s TA (s)
“

1− [1− σinTB (b− s)]B
”
. (46)
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3.5 Wounded nucleons

Similarly, the number of wounded nucleons in B is

wB (A; B; b) = B
Z

d2s TB (s)
“

1− [1− σinTA (b + s)]A
”
. (47)

Since the number of wounded nucleons in the collision of A and B is the sum of the wounded
nucleons in the nucleus A and B, we obtain (after making the appropriate shifts in the integration
over positions s)

w (A; B; b) = A
Z

d2s TA (b− s)
“

1− [1− σinTB (s)]B
”

+ B
Z

d2s TB (b− s)
“

1− [1− σinTA (s)]A
”
. (48)
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3. GLAUBER MODEL 3.5 Wounded nucleons

3.5.1 Wounded nucleons vs. binary collisions
The numbers of binary collisions, n(b), and the numbers of wounded nucleons, w(b), for Au+Au
collisions (A = 197) at different values of the impact parameter b. The results are presented for
two different values of the nucleon-nucleon inelastic cross section: σin = 30 mb (the second and
the third column), and σin = 40 mb (the fifth and the sixth column). The fourth and seventh
columns give geometric estimates of the centrality class of the collisions with the impact
parameters smaller than b (the fourth column is for σAuAu

in = 6.8 b, whereas the sixth column is
for σAuAu

in = 7.0 b).

b [fm] n(b) w(b) c n(b) w(b) c

0 881 370 0.00 1174 378 0.00
1 859 363 0.00 1146 371 0.00
2 801 344 0.02 1068 354 0.02
3 717 315 0.04 957 326 0.04
4 617 280 0.07 823 291 0.07
5 587 241 0.12 783 251 0.11
6 397 200 0.17 530 211 0.16
7 298 160 0.23 397 170 0.22
8 209 122 0.29 279 131 0.29
9 136 88 0.37 182 95 0.36
10 82 58 0.46 109 64 0.45
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3. GLAUBER MODEL 3.6 Soft and hard processes

3.6 Soft and hard processes

It is an experimental fact that pions (the most abundant particles produced in a nucleon-nucleon
as well as in a nucleus-nucleus collision) have on average small transverse momenta, p⊥ ∼ 400
MeV. The processes leading to the production of such low-energetic pions are called soft
processes. On the other hand, the pions with large transverse momenta, p⊥ > 1–2 GeV, are
produced by hard processes.

The soft processes cannot be described directly by perturbative QCD. In this case the strong
coupling constant is large and the nonperturbative effects, which are very difficult to deal with,
are important. Contrary, the hard processes involve large momentum transfers connected with a
small value of the strong coupling constant. Hence, they can be described successfully by the
methods of perturbative QCD.
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3. GLAUBER MODEL 3.6 Soft and hard processes

3.6 Soft and hard processes

Can we use the knowledge of wAB and nAB to make an estimate of the multiplicity of the
particles produced in a nuclear collision, provided the information about the multiplicity of
the particles produced in a more elementary nucleon-nucleon collision (at the same
energy) is available?

SEARCH FOR SIMPLE SCALINGS (SUPERPOSITION RULES)

For hard processes it is natural to assume that the number of the produced particles scales with
the number of binary collisions. In this case the scattering processes are well localized and the
interference effects between different collisions may be neglected. For soft processes the
appropriate scaling is more difficult to find. In fact, it is a postulate of the wounded-nucleon model
that the multiplicity of soft particles scales with the number of the wounded nucleons.
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3. GLAUBER MODEL 3.7 Wounded-nucleon model

3.7 Wounded-nucleon model

Białas, Bleszyński and Czyż argued (in 1976) that the average multiplicity in a collision of two
nuclei with the mass numbers A and B is

NAB = 1
2 wAB NNN, (49)

where NNN is the average multiplicity in proton-proton (nucleon-nucleon) collisions, and wAB is
the average number of the wounded nucleons (calculated in the Glauber framework). The energy
dependence of NNN is described by (??). The motivation for the use of (49) came from the
interpretation of the nucleon-nucleus interactions. The formula (49) with an additional expression
for the dispersion of multiplicity distributions form the main ingredients of the wounded-nucleon
model of the nucleus-nucleus collisions.
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3.7 Wounded-nucleon model

The charged particle pseudorapidity density as
a function of the number of the participants. The
measurement of the PHENIX group at RHIC,√

sNN = 130 GeV, is compared to the
measurement done by the WA98 group at the
SPS,

√
sNN = 17.3 GeV.
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3.8 Nuclear modification factor
A simple way to quantify the differences between the nucleus-nucleus collisions and the
nucleon-nucleon collisions is to calculate the nuclear modification factor,

RAB(p⊥) =
1

nAB

d2NAB

dp⊥dη
/

1
σ

pp
tot

dσpp
incl

dp⊥dη
. (50)

NAB – average number of particles produced in the collisions of the nuclei A and B, nAB – number
of the binary nucleon-nucleon collisions obtained in the framework of the Glauber model.

The denominator of (50) is the inclusive cross section for pp collisions divided by the total cross
section. This quantity is equal to the average number of particles produced in pp collisions in the
appropriate phase-space interval,

dNpp

dp⊥dη
=

1
σ

pp
tot

dσpp
incl

dp⊥dη
. (51)

If the collisions of the nuclei A and B are simple superpositions of the elementary pp collisions,
the scaling with the number of binary collisions should hold, and the nuclear modification factor is
expected to be equal to 1.
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3.8 Nuclear modification factor

The nuclear modification factor RdAu as
measured by the PHOBOS Collaboration at
BNL.
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3. GLAUBER MODEL 3.8 Nuclear modification factor

3.8 Nuclear modification factor

The nuclear modification factors RAuAu for
central and peripheral collisions (the upper and
central two panels), and their ratio (the lower
two panels). The measurement of the BRAHMS
Collaboration at BNL.
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3. GLAUBER MODEL 3.8 Nuclear modification factor

3.8 Nuclear modification factor

The nuclear modification factors RdAu and
RAuAu measured by the PHENIX Collaboration

at BNL.
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4. SPACE-TIME PICTURE OF
ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS
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4. SPACE-TIME PICTURE OF URHIC

The spacetime diagram of ultra-relativistic nuclear collisions. In the center-of-mass frame,
partons moving fast hadronize later than those moving slowly. Consequently, at very high
energies the evolution of the system at midrapidity is governed by the longitudinal proper time
τ =

p
t2 − z2, rather than by the ordinary time t . Note, that this picture breaks in the

fragmentation regions (i.e., at large values of |η|) where physical processes have different
character.

z

t

thermalization

QGP

hadron gas

freeze-outs

chemical and kinetic
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4. SPACE-TIME PICTURE OF URHIC 4.1 Particle production processes

4.1 Particle production processes

The result of the multiple nucleon-nucleon collisions discussed before is that the two colliding
nuclei evolve rapidly into an extended, hot and dense system of quarks and gluons.

There exist several frameworks to describe this transition, for example:

1) QCD string breaking,

2) parton cascades models,

3) color glass condensate evolving into glasma and later into the quark-gluon plasma.

In all cases, the process of the particle production may be characterized by the decoherence
time τdec which is required to form the incoherent distribution of quarks and gluons from the
highly coherent nuclear wave functions.

Theoretical interpretations of the data measured at RHIC suggest that this time is very short,
τdec � 1 fm. This is so, because the decoherence time τdec should be smaller than the
equilibration time τtherm, and the latter has been found to be a fraction of a fermi at RHIC.

string models = soft processes

parton cascades = hard processes
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4.2 Thermalization

The experimental data obtained in the RHIC experiments favor a very short
thermalization/equilibration time, τtherm < 1 fm. The support for this idea comes mainly
from applications of relativistic hydrodynamics which successfully describes the data if one
assumes an early starting time of hydro τi < 1 fm (τtherm ≤ τi).

Since the final multiplicities are are determined mainly by the number of wounded nucleons, it is
reasonable to assume that the initial entropy density of the thermalized system is proportional to
the density of wounded nucleons.

σi(x⊥) ∝ w (x⊥)
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4. SPACE-TIME PICTURE OF URHIC 4.2 Thermalization

4.2 Thermalization: initial conditions for
hydrodynamics
The typical arrangement of the coordinate system in the transverse plane. The impact vector,
denoted by the dashed arrow, lies in the reaction plane along the x-axis, b = (b, 0).

The center of the nucleus B has the coordinates (b/2, 0),
while the center of the nucleus A is located at (−b/2, 0).

The position of the wounded nucleon is given by the two-dimensional vector x⊥ = (x , y).
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b

x
¦

x
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4.2 Thermalization: initial conditions for
hydrodynamics
The average density of the wounded nucleons in the nucleus B at the transverse position x⊥ is

wB (x⊥) = B TB

„
−

b
2

+ x⊥

«(
1−

»
1− σin TA

„
b
2

+ x⊥

«–A
)
. (52)

The average density of the wounded nucleons in the nucleus A is analogous

wA (x⊥) = A TA

„
b
2

+ x⊥

«(
1−

»
1− σin TB

„
−

b
2

+ x⊥

«–B
)
. (53)

For the collision of two nuclei, A + B, one may use the final expression in the form

w (x⊥) = wA (x⊥) + wB (x⊥) . (54)

In the case of the binary collisions, similar geometrical considerations lead to the formula

n (x⊥) = σin A B TA

„
b
2

+ x⊥

«
TB

„
−

b
2

+ x⊥

«
. (55)

We recall that σin in Eqs. (52), (53), and (55) is the nucleon-nucleon inelastic cross section.
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4.2 Thermalization: initial conditions for
hydrodynamics

For boost-invariant systems with vanishing baryon chemical potential one usually assumes that
either the initial entropy density, σi(x⊥) = σ(τi, x⊥), or the initial energy density,
εi(x⊥) = ε(τi, x⊥), are directly related to the density of sources of particle production,
ρsr(x⊥).

The sources considered in this context are wounded nucleons or binary collisions. The
symmetry with respect to the Lorentz boosts along the collision axis means that it is sufficient to
consider all these quantities in the plane z = 0. In general, a mixed model is used, with a linear
combination of the wounded-nucleon density w (x⊥) and the density of binary collisions n (x⊥).
This leads to the two popular choices:

σi(x⊥) ∝ ρsr(x⊥) =
1− κ

2
w (x⊥) + κ n (x⊥) (56)

or
εi(x⊥) ∝ ρsr(x⊥) =

1− κ
2

w (x⊥) + κ n (x⊥) . (57)

W. Florkowski (UJK / IFJ PAN) URHIC June 7, 2012 68 / 79



4. SPACE-TIME PICTURE OF URHIC 4.2 Thermalization

4.2 Thermalization: tilted source

Białas and Czyż: analysis of the
deuteron-gold collisions, wounded
nucleons produce particles mainly in the
direction of their motion

P. Bożek: this leads to a tilted source
and explains negative v1

x

y

z

+

-

b

but all of this requires a hydrodynamic model of expansion...
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4.3 Hydrodynamic expansion

The perfect fluid is defined formally by the form of its energy-momentum tensor, namely

Tµν = (ε+ P)uµuν − Pgµν , (58)

where gµν is the metric tensor with g00 = 1, ε is the energy density, P is the pressure, and uµ is
the four-velocity of the fluid element.
Such a form of the energy-momentum tensor follows from the assumption of local thermal
equilibrium. Equations of motion of the perfect fluid are obtained from the conservation laws

∂µTµν = 0. (59)

Equations of motion should be supplemented by the equation of state! Otherwise, the system of
equations cannot be not closed.
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4.3 Hydrodynamic expansion

For systems with non-zero baryon density n, w = (ε+ P)/n, s = σ/n.

Substituting (58) in (59) and using thermodynamic identities gives

d
dτ

(wuν) ≡ uµ∂µ(wuν) =
1
n
∂νP. (60)

The projection of (60) on the fluid four-velocity uν and the use of thermodynamic identities yields

ds
dτ
≡ uµ∂µs = 0. (61)
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4. SPACE-TIME PICTURE OF URHIC 4.4 Thermal freeze-out

4.4 Thermal freeze-out

The thermal or kinetic freeze-out is the stage in the evolution of matter when the hadrons
practically stop to interact. In other words, the thermal freeze-out is a transition from a strongly
coupled system (very likely evolving from one local equilibrium state to another) to a weakly
coupled one (consisting of essentially free streaming particles).

It is triggered by the expansion of matter, which causes a rapid growth of the mean free path,
λmfp, of particles. The thermal freeze-out happens when the timescale connected with the
collisions, τcoll ∼ λmfp, becomes larger than the expansion timescale, τexp. In this case the
particles depart from each other so fast that the collision processes become ineffective. We may
formulate this condition as the inequality

τcoll ≥ τexp. (62)
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4.4 Thermal freeze-out

The magnitude of the collision time is determined by the product of the average cross section
and the particle density,

τcoll ∼ 1
σ n , (63)

whereas the magnitude of the expansion time is characterized by the divergence of the
four-velocity field, uµ, describing the hydrodynamic flow of matter,

τexp ∼ 1
∂µuµ . (64)

Very often a simplified criterion is assumed which says that the thermal freeze-out happens at
the time when the mean free path of hadrons is of the same order as the size of the system.
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4.5 Chemical freeze-out
A schematic physical picture adopted in the thermal models of particle production. At a certain
stage of the evolution of the system, a gas of stable hadrons and resonances is formed. The final
(measured) multiplicities of hadrons consist of primary particles, present in the hot fireball, and of
secondary particles coming from the decays of resonances.

Essentially two parameters, T and µB explain the ratios of hadronic abundances! Great success
at RHIC!
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4.6 Hanbury–Brown-Twiss interferometry
The fundamental object in the HBT interferometry is the two-particle correlation function
C(p1,p2), measured for pairs of identical particles such as π+π+, π−π−, or K +K +. In general,
it is defined by the expression

C(p1,p2) =
P2(p1,p2)

P1(p1)P1(p2)
, (65)

where P1(p) is the invariant inclusive one-particle distribution function in the space of rapidity
and transverse-momentum,

P1(p) = Ep
dN
d3p

=
dN

dyd2p⊥
, (66)

and P2(p1,p2) is the analogous two-particle distribution

P2(p1,p2) = Ep1 Ep2

dN
d3p1d3p2

=
dN

dy1d2p1⊥dy2d2p2⊥
. (67)

Equations (66) and (67) imply that the correlation function (65) transforms like a Lorentz scalar.
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4.6 Hanbury–Brown-Twiss interferometry

In (65) we may use the average momentum

k =
1
2

(p1 + p2) , (68)

and the difference of the two momenta

q = p1 − p2. (69)

The out-side-long coordinate system used in the
standard HBT analysis of the correlation
functions. The vector k lies in the x − z plane.
By making the Lorentz boost along the collision
axis we may also set k‖ = 0. In this way we
change to the special frame that is called the
longitudinally comoving system (LCMS).

y = side

x = out

z = long

p1

p2

k

q

qout

qside
qlong
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4.6 Hanbury–Brown-Twiss interferometry

C(k⊥,q) = 1 + λ exp
h
−R2

long(k⊥)q2
long − R2

out(k⊥)q2
out − R2

side(k⊥)q2
side

i
. (70)

Pion HBT radii vs. mT =
q

k2
T + m2

π

measured by the STAR Collaboration at
midrapidity in six different centrality
windows.
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hydro expansioninitial conditions
hadronic

freeze-out

thermalization

STANDARD MODEL HMODULESL of HEAVY-ION COLLISIONS

Glauber or CGC perfect or viscous free-streaming or hadronic cascade

NEW: FLUCTUATIONS IN THE INITIAL STATE � EVENT-BY-EVENT HYDRO � FINAL-STATE FLUCTUATIONS

EQUATION OF STATE?

VISCOSITY?

Shuryak: Heavy ion collisions, described well by hydro/thermodynamics, are in fact much simpler
than more "elementary" pp or e+ e- collisions.
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