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ABL 

 In their 1964 paper Aharonov, Bergmann and 
Lebowitz introduced a time symmetric quantum 
theory. 

 By performing both pre- and postselection (         and  

            respectively) they were able to form a symmetric 
formula for the probability  of measuring the 
eigenvalue cj of the observable c: 
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TSVF 

 This idea was later widened to a new formalism of 
quantum mechanics: the Two-State-Vector 
Formalism (TSVF). 

 The TSVF suggests that in every moment, 
probabilities are determined by two state vectors 
which evolved (one from the past and one from the 
future) towards the present. 

 This is a hidden variables theory, in that it completes 
quantum mechanics, but a very subtle one as we 
shall see. 
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Strong Measurement 

Stern-Gerlach magnet 
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efficient detectors  
(very low momentum uncertainty) 

4 



Weak Measurement - I 

Stern-Gerlach magnet 

inefficient detectors  
(high momentum uncertainty) 

? ? 
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Why Weak Measurement? 
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Weak Measurement - II 

 The Weak Measurement can be described by the Hamiltonian:   

                                

 In order to get blurred results we choose a pointer with zero 

expectation and               standard deviation. 

 In that way, when measuring a single spin we get most results 

within the wide range             , but when summing up the       

results, most of them appear in the narrow range                             

agreeing with the strong results when choosing            .  
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Weak Value 

 The “Weak Value” for a pre- and postselected (PPS) 
ensemble: 

     

 
 

 It can be shown that when measuring weakly a PPS 
ensemble, the pointer is displaced by this value: 
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The Weak Interaction 

 We generalize the concept of weak measurement to 
the broader “weak interaction”.  

 It can be shown that the Hamiltonian                                      

                                                                           , when 
particle 1 is pre- and post- selected, results, to first 
order in    , in the weak  interaction : 
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0% 100% 

Interference 

Can we outsmart the “which path” uncertainty?  

Which Path - I 
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50% 50% 

50% 

Can we outsmart the “which path” uncertainty?  

Which Path - II 
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Can we outsmart the “which path” uncertainty?  

Which Path - III 
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Interference 

Can we outsmart the “which path” uncertainty?  

Which Path - IV 
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Which Path Measurement Followed by 

Interference 
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 A Quantum Shell Game 
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Tunneling 
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The Correspondence Principle 
17 

 Every quantum system is described by quantum numbers. 

 When they become large, the system approaches its 
classical limit. 

 This correspondence was first described by Bohr in the 
1920’ regarding the atom, but has a broader meaning. 

 For example, the appropriate quantum number for the 
classical energy of an oscillator 
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Challenging The Correspondence Principle 

 Let  

 We Pre- and Post-select :  

    and                                           where           ,                     .   

 

 

 

 

 The weak values can be calculated to be: 

                and                  .      
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Challenging The Correspondence Principle 

 We argue that using the idea of weak interaction, this 
weird result gets a very clear physical meaning. 

 When interacting with another oscillator  

     through                       , it changes its momentum 
rather then  its position: 
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Summary 

 Weak measurements enable us to see and feel the TSVF. 

 They also present the uniqueness of quantum mechanics. 

 By using them we overcome the uncertainty principle in 
a subtle way and enjoy both which-path measurement 
and interference. 

 Weak values, as strange as they are,  have physical 
meaning: 
 In case of many measurements followed by proper postselections: 

Weak interaction or deviation of the measuring device. 

 Otherwise: An error due to the noise of the measurement device. 

 In that way we avoid counterfactuals and obtain 
determinism in retrospect. 
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Questions 


