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PARTICLE PHYSICISTS OF THE 
20TH CENTURY

• Pieced together an  
almost perfect theory of 
particle interactions

• Guided by symmetry 
and mathematical 
consistency

• Predicted new particles 
to be  found  many 
years later! ...



SYMMETRY MAKES ALL LIGHT
• We have  a theory which predicts 

accurately probabilities  for quark, 
lepton, gluon, W and Z boson 
interactions. 

• High energy symmetries. 
We can reshuffle W, Z  bosons and the 
photon reshuffling also up and down 
quarks without altering hypothetical 
measurements at very high energies

• Symmetries render quantum field 
theories predictive. 



PUZZLE OF MASS

• Why then the W and Z 
bosons have mass and  
the photon is massless? 

• What is the origin of 
mass for elementary 
particles? 

mγ = 0
mgluon = 0
mW ≈ 86×mproton

mZ ≈ 97×mproton

me ≈ 0.00054×mproton

mµ ≈ 0.113×mproton

mτ ≈ 1.894×mproton

mstrange ≈ 0.1×mproton

mcharm ≈ 1.3×mproton

mbottom ≈ 4.5×mproton

mtop ≈ 184×mproton



MASS IS STATIC ENERGY
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A FIFTH FORCE! WHAT IS IT?

• Known forces cannot  create sufficient potential 
energy to account for the measured masses of 
elementary particles.

• What is the new force? This is  the tightest tied  
Gordian knot  of particle physics. 
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THE HIGGS HYPOTHESIS

• The simplest  known solution. 
Introduced in 1964.

• The “Standard Model” of particle 
interactions is inconsistent without it! 

• All  probed Standard Model 
predictions have been proven 
correct.

• Higgs hypothesis still awaits 
verification! 

Unknown Force  = Undiscovered 
particle (Higgs boson)! 



TOPICS IN THIS LECTURE

• classic and quantum action and their symmetries

• breaking of global symmetries and goldstone bosons

• breaking of approximate global symmetries and pseudo-goldstone 
bosons

• identification of Goldstone boson fields and fields orthogonal to 
them. 

• breaking of local gauge symmetries and the mass spectrum of 
electroweak gauge bosons. 



CLASSICAL ACTION

• Classical laws of physics are derived by a principle of least 
action. 

• For example, classical electrodynamics is described by a 
Lagrangian density

• The physical value of the electromagnetic field corresponds to 
a minimum value of the action, satisfying Maxwell equations  

L = −1

4
FµνF

µν + jµA
µ

δS = δ

�
d3�xdtL = 0

δS = 0 � ∂µF
µν = jν



QUANTUM FIELDS
• In our quantum world, we compute expectation values of 

physical observables through a path integral over fields 

• This encodes the uncertainty principle. All field values, not only 
the extrema of the action, contribute to probability 
amplitudes. 

Z[J ] = eiW [J] =

�
Dφ eiS[φ]+i

�
d4xJ(φ)φ(x)

�vacuum|vacuum�J = Z[J ]

�
φ̂
�

J
≡

�
vacuum|φ̂(x)|vacuum

�

J

�vacuum|vacuum�J
=

δ

δJ(x)
W [J ]



QUANTUM ACTION
• Theorem of least quantum effective action: 

“the physical expectation values of quantum fields in the ground state for a 
closed system (e.g. the universe) where the sources take a zero value 
minimize the quantum action” 

 

• Every probability amplitude for any physical process can be derived from 
the quantum action provided that the latter can be computed. 

• Quantum fields “create” and “annihilate” particle and other states from the 
vacuum.

• Intuitively, the expectation value of fields in the vacuum (ground state with 
zero number of particles) must be zero. Does it have to be always like this? 

δΓ [�φ�0]
δ �φ�0

= 0Γ [�φ�J ] = W [J ]−
�

d4xJ(x) �φ(x)�J



SYMMETRIES OF THE 
QUANTUM ACTION

• Symmetries of physical systems give rise to conservation laws.  

• Suppose we have identified a number of symmetries which 
leave invariant the partition function Z[J]. 

• These symmetries constrain probability amplitudes and 
relative rates of particle interactions. 

• The symmetries of the partition function are not guaranteed 
to be symmetries of the quantum action



SYMMETRIES OF THE 
QUANTUM ACTION

• Assume that the partition function is invariant under a field 
transformation

• The quantum action is symmetric under a transformation

• This is not necessarily the same symmetry. It may be 

• But it is clear how to find the symmetries of the quantum 
action if we know the symmetries of the partition function. 

• The latter may also be related to the symmetries of the classical 
action.

φ → φ+ δφ � W [J ] → W [J ]

�φ� → �φ�+ �δφ� � Γ [�φ�] → Γ [�φ�]

�δφ� �= δ �φ�



SPONTANEOUS SYMMETRY 
BREAKING OF GLOBAL SYMMETRIES
• Definition of spontaneous symmetry breaking: 

“Symmetries of the quantum action are not symmetries of the 
physical states and especially the vacuum state.”

• SSB is associated with a degeneracy of the vacuum. 

• Multiple states with a field expectation value corresponding to a 
minimum of the quantum action

Γ [�φ�] = Γ [S �φ�] = minimum
A� :

�
A|φ̂|A

�
= �φ�

B� :
�
B|φ̂|B

�
= S �φ��



DEGENERATE VACUUM 
STATES

• The ground state of a physical system is one of the many 
possible vacuum states.

• Once one of all possible (orthonormal) vacuum states has 
been chosen, a tunneling through an infinite volume is 
required in order to move to another (of the same energy). 

• True vacuum states are stable. 



SSB OF GLOBAL SYMMETRIES 
AND GOLDSTONE BOSONS

• Broken global symmetries constrain propagators and other 
Green’s functions.

Γ [�φn�] = Γ [�φn�+ δ �φn�]

�
�

d4x
δ2Γ

δ �φl� δ �φn�
δ �φn� = 0

�
d4z

δ2Γ

δ �φn(x)� δ �φk(z)�
�Ω|Tφk(z)φm(y)|Ω� = −δ(x− y)δnm



GOLDSTONE BOSONS

• The spectrum of a SSB theory has a massless state for each 
symmetry of the quantum action which does not leave the 
vacuum state invariant (for each broken symmetry generator) 

• These massless states are one-particle states

• They are invariant under rotations: spin-0 states

• These states have the same quantum numbers as the 
corresponding conserved current of the broken symmetry 
generators. 



EXAMPLE OF THEORY WITH 
SPONTANEOUSLY BROKEN GLOBAL 

SYMMETRIES

• A system of N real scalar fields

• The Lagrangian, action, and quantum action are all symmetric 
under rotations

• Up to loop corrections, the quantum action is:

L =
1

2

�

n

(∂µφn)
2 − M2

2

�

n

φ2
n − g

4

�
�

n

φ2
n

�2

φn → φ�
n = Rnmφm, R2 = 1

Γ

space-time volume
= −Veff Veff =

M2

2

�

n

�φn�2 +
g

4

�
�

n

�φn�2
�2



EXAMPLE OF A THEORY WITH 
BROKEN GLOBAL SYMMETRIES

• Extrema of quantum action satisfy

• A symmetric vacuum under rotations for a “choice” of 
Lagrangian parameters

• Spontaneous symmetry breaking occurs for :

• Degenerate vacua of which one is chosen spontaneously. 

M2, g > 0 � �φl� = 0

M2 < 0, g > 0 �
�

n

�φn�2 ≈ −M2

g

�
M2 + g

�
�

n

�φn�2
��

�φl� ≈ 0



MASS SPECTRUM

• The corresponding mass matrix of the theory is

• Diagonalizing, 

• we find N-1 particles with zero mass and one massive particle 
with mass:

M2
nm =

∂2Veff

∂ �φm� ∂ �φn�
≈ 2g �φm� �φn�

det
�
M2

nm − µ2δnm
�
= 0

�
�
µ2

�N−1

�
µ2 − 2g

�

i

�φi�2
�

= 0

µ2 ≈ 2g
�

i

�φi�2 = 2|M |2



MASS SPECTRUM

• The action is symmetric under the O(N) group with 
N(N-1)/2 generators

• Spontaneous symmetry breaking picks up one 
direction in the space of 

• The linear combinations of fields which are 
orthogonal to this direction can be freely rotated to 
each other. 

• The surviving symmetry group is O(N-1) with (N-1)
(N-2)/2 generators which do not  transform the 
spontaneously chosen vacuum expectation value. 

• N(N-1)/2-N-1)(N-2)/2=(N-1) generators, equal to 
the number of Goldstone bosons,  transform the 
vacuum expectation value and are “broken”. 

broken

unbroken

�φ1�

�φN �

�φN−1�

�
�φ
�

�φi�



APPROXIMATE GLOBAL SYMMETRIES 
AND SPONTANEOUS SYMMETRY 

BREAKING

• Consider an effective potential which is approximately 
symmetric:

• Under a transformation,

•  Does spontaneous symmetry breaking take place for 
approximate symmetries? 

Veff = V0(φ) + VI(φ)

φ → φ+ �δφ

�
δV0(φ) = 0 δVI(φ) �= 0

symmetric
breaks symmetry

explicitly



VACUUM ALIGNMENT

• Expanding around the vacuum of the symmetric action, 

• we find that at leading order the expectation value of the 
fields is “aligned” to the symmetry breaking term. For a linear 
symmetry transformation, 

• the vacuum expectation values of the fields have a certain 
direction in the field-coordinate space 

�φn� =
�
φ(0)
n

�
+

�
φ(I)
n

�

δφn =
�

m

Tnmφm

�

nm

∂VI

∂
�
φ(0)
n

�Tnm

�
φ(0)
m

�



VACUUM ALIGNMENT

• For a quantum action with exact-symmetry,  spontaneous 
symmetry breaking picks up randomly one of the degenerate 
vacuum states.  

•  For an action with an approximate symmetry, the degeneracy is 
lifted (at least partially) and the vacuum states of the theory with 
exact symmetry yield different values for the effective action. 

• The vacuum-alignment condition selects a state which minimizes 
the value of the symmetry-breaking term in the effective action. 



PSEUDO-GOLDSTONE 
BOSONS

• The mass matrix for a theory with a spontaneously broken 
approximate symmetry has the form:

• This is positive definite since vacuum alignment requires that Vi 
is minimized.  

• Goldstone bosons (termed pseudo-Goldstone bosons) have 
mass.  

M2
ab =

�

cd

F−1
ac

∂2VI

∂θc∂θd
F−1
b



WHICH FIELDS ARE GOLDSTONE 
BOSONS AND WHICH NOT?

• Let’s assume a spontaneous global symmetry breaking pattern

• The quantum action is invariant under the G group

• The vacuum expectation values of the fields are invariant 
under the  H group

G → H, H ⊂ G

�ψn� =
�

m

hnm �ψm� , ∀h ∈ H

ψn → ψ�
n =

�

m

gnmψm � L(ψn) = L(ψ�
n), ∀ g ∈ G



WHICH FIELDS ARE GOLDSTONE 
BOSONS AND WHICH NOT?

• The massless eigenstates of the mass-matrix 

• are:                        .  The non-Goldstone fields should be orthogonal:

• Starting from an arbitrary labeling of fields,    , we can find the fields 
orthogonal to Goldstone bosons     by applying a local gauge 
transformation.

∼ M2
ln

Γ [�ψn�] = Γ [�ψn�+ δ �ψn�] �
�

d4x
δ2Γ

δ �ψl� δ �ψn�
δ �ψn� = 0

δ �ψn� ∼
�

m

Tnm �ψm�

�

n

ψ̃nδψn =
�

nm

ψ̃nTnm �ψm� = 0.

ψn

ψ̃n

ψn(x) =
�

m

γnm(x)ψ̃m(x), γ ∈ G



WHICH FIELDS ARE GOLDSTONE 
BOSONS AND WHICH NOT?

• This local transformation is constructed specially at each space-time 
point to maximize the quantity

• To expose the Goldstone and non-Goldstone fields it remains to 
substitute in the Lagrangian

• This transformation, had it been global, would let the Lagrangian 
invariant. 

V [g] =
�

nm

ψn(x)gnm(x) �ψm� V [γ] ≥ V [g], ∀ g ∈ G

ψn(x) =
�

m

γnm(x)ψ̃m(x)



WHICH FIELDS ARE GOLDSTONE 
BOSONS AND WHICH NOT?

• However, a local transformation introduces new terms. 

• The Goldstone fields correspond to the functions which 
parameterize the local transformation

γ(x) = γ(x0) + (x− x0) · ∂γ(x0) + . . . = γ(x0) + F [∂γ]

L [ψ(x)] = L
�
γ(x)ψ̃(x)

�

= L
�
γ(x0)ψ̃(x)

�
+ (derivatives of γ(x))

= L
�
ψ̃(x)

�
+ (derivatives of γ(x))

γ(x)



GOLDSTONE BOSON MASS 
AND INTERACTIONS

• The Lagrangian is a a functional of non-Goldstone fields and 
derivatives of Goldstone boson fields

• This forbids a mass-term for the Goldstone bosons 

• Also, Feynman rules for Goldstone interactions should be 
proportional to their momenta. At low energies, Goldstone 
interactions vanish. 

L
�
ψ̃, ∂B, ∂2B, . . .

�

m2
BB

2



SPONTANEOUSLY BROKEN 
LOCAL SYMMETRIES

• Exact global symmetries and the inevitable massless Goldstone 
bosons have been feared by particle theorists.  Such particles 
should be easy to detect experimentally. 

• Goldstone’s theorem can be evaded if the action is symmetric 
under a local symmetry.  

• Then, the local gauge transformation which makes explicit the 
fields orthogonal to the Goldstone bosons leave the Lagrangian 
intact.  Goldstone bosons disappear!

ψn(x) → ψ�
n(x) = gnm(x)ψm(x) � L [ψn] = L [ψ�

n]

L [ψ(x)] = L
�
γ(x)ψ̃(x)

�
= L

�
ψ̃(x)

�



GAUGE SYMMETRY

• In order to achieve a local symmetry, derivatives in the 
Lagrangian must appear in combinations with gauge fields, 
forming covariant derivatives.

• “Kinetic energy” terms in the Lagrangian appear in the form,    

∂µ → (Dµ)nm = ∂µδnm − igT a
nmAa

µ

�
∂µψ̃n

�2
→

�
Dµψ̃n

�2



MASSIVE GAUGE FIELDS

• We now decompose fields into their vacuum expectation 
value and an excitation

• The covariant derivative becomes

• The kinetic energy term (which is the square of the above) 
contains  potential mass terms for gauge bosons. 

ψ̃n =
�
ψ̃n

�
+ φn

(Dµ)nmψ̃m = (Dµ)nmφ̃m − igAa
µT

a
nm

�
ψ̃m

�

µ2
ab g

µνAa
µA

b
ν µ2

ab = −g2T a
nmT b

nl

�
ψ̃m

��
ψ̃l

�



MASSES OF GAUGE BOSONS

• The mass-matrix for gauge bosons satisfies, 

(generators are imaginary for real fields)

• Masses of gauge bosons are proportional to couplings.  Ratios of 
masses are constrained by symmetry.  Can be tested experimentally!

• This is a mechanism in which gauge bosons can obtain a mass. We 
believe that the W and Z electroweak gauge bosons acquire their 
mass in this way and plenty of data verifies this. 

µ2
ab ≥ 0



MASSES OF GAUGE BOSONS 
AND SYMMETRY GENERATORS

• If there is a linear combination of symmetry generators which is 
unbroken, 

then the mass matrix of the gauge bosons has a zero eigenvalue. 

• Conversely, if there is a massless gauge boson then there is a 
linear combination of generators which is unbroken. 

•  Massive gauge bosons correspond to broken generators. 

T̃nm =
�

a

caT
a
nm with T̃nm

�
ψ̃m

�
= 0



SYMMETRY OF ELECTROWEAK 
INTERACTIONS 

• Experimental data meticulously collected in the last 50 years 
has verified in a spectacular fashion that the electroweak 
interactions possess an SU(2) x U(1) local gauge symmetry.  

• This symmetry group has four generators.  

• Three (            ) of the four corresponding gauge bosons are 
massive. There is a linear combination of generators, 
corresponding to the photon, which is unbroken.   
. 

W+,W−, Z

SU(2)⊗ UY (1) → Uem(1)
Vacuum

symmetry
Quantum action

symmetry



CAUSES OF SPONTANEOUS 
SYMMETRY BREAKING? 

• We have seen that spontaneous symmetry breaking manifests itself 
with a characteristic mass spectrum of Goldstone bosons (exact 
global symmetries), pseudo-Goldstone bosons (approximate global 
symmetries) or massive gauge bosons (local gauge symmetries). 

• There is no mathematical or experimental doubt about the 
consequences of spontaneous symmetry breaking.  

• But now we need to start to speculate. 

• What causes electroweak symmetry breaking at the first place?  



THE SIMPLEST HYPOTHESIS
• The commonly known as Standard Model of electroweak 

interactions is built using the simplest mechanism for the  
spontaneous breaking of the SU(2) x U(1) gauge group.  

• It introduces a sector of scalar fields and interactions,  

• It is a renormalizable theory.

φ =
1√
2

�
iπ1 + π2

σ − iπ3

�

L = (Dµφ)(D
µφ)† − λ

�
|φ|2 − v2

2

�2

+ . . .

Dµ = ∂µ + i
g

2
T aAa



A NEW PARTICLE

• It gives rise to a single new particle, the infamous Higgs boson. 

• The mass of the Higgs boson is the only undetermined parameter 
in this theory. 

• Other mechanisms for electroweak symmetry breaking are also a 
possibility. 

• These introduce a richer spectrum of new particles..

• An exciting time for LHC whose purpose is to explore the exact 
mechanism  for EWSB.


