#### <u>Listening to the Universe with gravitational-wave</u> <u>interferometers:</u>

#### Recent observational results from LIGO and Virgo

**Brennan Hughey** 

for the LIGO and Virgo Collaborations

ICFP 2012 June 12th





DCC-G1200643 1

#### <u>Introduction</u>

- > We've been looking at the universe via astronomy for several centuries
- ➤ With the global network of gravitational wave (GW) interferometers we are trying to listen to the universe
- measuring differential strain  $\Delta L/L < 10^{-21}$  in the arms of the interferometers
- Goals of this talk:
- Summarize analysis to come out in the last year or so, using data from 2007-2010
- Focus on multi-messenger astronomy, especially our recent low-latency EM follow-up program (trying to see and hear the same thing at the same time)
- Touch on detection prospects in the Advanced detector era



#### **Continuous Waves**



Vela in X-ray

Searches for periodic long-term gravitational waves from pulsars

- ➤ All-sky search for periodic signals
  - factor of 2 below previous results
  - expands parameter space



- ➤ Search for GWs from Vela pulsar with Virgo
  - 3 methods well below limit derived from "spin down"



- Spin-off science (non-LIGO/Virgo paper):
  - 9 Gamma-ray pulsars discovered with Fermi-LAT data
  - Using analysis methods developed for continuous GW searches





#### **Stochastic**

Search for unresolved sources from cosmological background or composite of astrophysical sources

- Whole-sky stochastic analysis
- 600-1000 Hz frequency band
- First to include Virgo in stochastic cross-correlation analysis
- Factor of 7 improvement over previous limits
- Directional searches:
- First spherical harmonic decomposition search: sensitive to extended sources
- Radiometer search for point-like sources: factor of 30 improvement over previous
- Factor of 5 improvement for individual point sources like Sco X-1, SN1987A and Galactic center









#### **Compact Binary Coalescence**



Transient GWs from coalescing binary systems of neutron stars and black holes

First search to use complete numerical relativity waveforms for entire inspiral-merger-ringdown process

Phys. Rev. D83 (2011)

➤ Inspiral search in S6/VSR2-3 data for systems with mass 2-25 M<sub>☉</sub> Includes results of blind injection challenge: GW100916 or "the Big Dog"



- End to end hardware injection test of LIGO-Virgo detection
- Simulated neutron star binary coalescence
- Full test of process not revealed as injection for months
- Facilitated much work on parameter estimation
- False alarm rate estimate 1 per 7000 years



#### All-Sky Burst Search

ArXiv: 1202.2788

➤ All-sky, all-times search for signals which do not assume specific morphology (GW 'bursts') is least constrained transient search – open to many source models and unexpected signals







➤ Intermediate Mass Black Hole search uses same algorithm to target black hole binaries at larger masses than CBC searches





## Multi-messenger Transient GW-EM Astronomy

Gravitational waves (GWs) tell us different things than electromagnetic (EM) signals You learn different things by hearing than you do by seeing

#### **Gravitational Wave Signal**

- Bulk motion dynamics
- Luminosity distance
- Progenitor mass
- Direct probe of central engine

#### **Light curve and spectrum**

- Host galaxy
- Gas environment
- Red shift distance
- Precise Sky Localization

#### Full picture of progenitor physics

Plus: coincident observation of EM signal can dramatically increase detection confidence of a gravitational wave candidate event

## **Externally Triggered Searches**



> Offline searches in which external electromagnetic triggers are used to dig into GW data



## Coincidence with GRBs

ArXiv: 1205.2216

- Search for GWs in coincidence with 154 GRBs during recent science runs
- Both "burst" search and compact binary coalescence search (for short GRBs)
- > GRBs from Fermi, Swift and other contributors to GCN network

ESO/A Roquette



- ➤ Special analysis devoted to a possibly nearby short GRB051103 (in M81, 3.6 Mpc distant) lookings for CBCs, star-quakes or generic bursts
- Compact binary merger in M81 excluded to good confidence, Supports case that it was a distant SGR if event was in M81





# Search for Coincidence with Neutrinos from ANTARES



- > Search for GWs in coincidence with 158 neutrino events from 5-line ANTARES
- Events identified in 2-lines have 2 possible locations; both analyzed
- > Possible joints sources: GRBs (including "choked" GRBs), SGRs or cosmic strings
- More joint ANTARES/LIGO/Virgo analysis on the horizon, plus IceCube.....







## Multimessenger Astronomy with Gravitational Waves



> Offline searches in which external electromagnetic triggers are used to dig into GW data



### Multimessenger Astronomy with Gravitational Waves



- Offline searches in which external electromagnetic triggers are used to dig into GW data
- Low-latency electromagnetic follow-up of GW triggers



### Low Latency EM Follow-Up Program



- Subthreshold candidate GW events sent to partner ~meter class telescopes network
- Target alert rate of 1 per week
- Ran during parts of most recent science runs Dec 2009-Jan 2010 and Sep to Oct 2010
- Images obtained for 8 different events





Astronomy & Astrophysics 541 (2012)A155



### Telescope Network

Used in winter and autumn run autumn run only



#### **Probability Skymap and Pointing**

Catalog used to find locations of nearby galaxies D < 50 Mpc Marked in black

Blue Light Luminosity used as proxy for stellar mass, and so prior for each galaxy



#### Sample of Pointing Success Rates



Coherent Wave Burst ROTSE size FOV

Shaded box shows range of nominal detection thresholds in S5/VSR1 search

 $\eta$  is "coherent SNR" measured by cWB; roughly proportional to network SNR

#### **Big Dog Revisited**

- Received alert 8 minutes after event (in middle of night)
- > Sent to telescopes 45 minutes after event
- Visually identified as inspiral shortly after trigger generated
- Demonstrates that we're identifying "signal" with very low latency









- Swift satellite followed up 2 triggers
- Paper written jointly with Swift scientists describes X-ray and UV/optical search
- Includes monte carlo study of combined X-ray and GW significances







#### Prospects for Detection in



#### LSC MOUNTING Advanced Era

Predicted Advanced Detector CBC detection rates per year at design sensitivity

|       | Low | Realistic | High |
|-------|-----|-----------|------|
| NS-NS | 0.4 | 40        | 400  |
| NS-BH | 0.2 | 10        | 300  |
| BH-BH | 0.4 | 20        | 1000 |

#### Compared to initial detectors

|       | Low    | Realistic | High |
|-------|--------|-----------|------|
| NS-NS | 2X10-4 | 0.02      | 0.2  |
| NS-BH | 7X10-5 | 0.004     | 0.1  |
| BH-BH | 2X10-4 | 0.007     | 0.5  |



Order of magnitude improvement in sensitivity -> Order of magnitude improvement in range -> 3 orders of magnitude more volume

## Multi-messenger GW Astronomy in Advanced Era

- > Joint transient detection rate likely to be much less than GW-only rate
- Beaming of EM emission means most GRBs not pointing at us
- Sky coverage in EM remains a critical issue, LSST should help
- Work underway to optimize pointing strategy, statistical treatment etc.
- Metzger & Berger\* suggest kilonova as most promising source
- Even one or few joint detections will enable a lot of additional science: e.g. measure Hubble constant, confirm GRB progenitor

