

International Conference on New Frontiers in Physics , Κρήτη, June 2012

Outline

- Motivation for heavy flavor physics
- Open heavy flavor
 - Charm mesons
 - Non-photonic electrons
- Quarkonia
 - J/ψ and Υ measurements
- Summary and Outlook

Relativistic Heavy Ion Collider

RHIC site in BNL on Long Island - taking data from 2000

RHIC has been exploring nuclear matter at extreme conditions over the last years

Lattice QCD predicts a phase transition from hadronic matter to a deconfined state, the Quark-Gluon Plasma

Colliding systems:

p↑+p↑, d+Au, Cu+Cu, Au+Au Cu+Au, U+U

Energies

 $\sqrt{\mathbf{s_{NN}}}$ = 20, 62, 130, 200 GeV (500 GeV) + 7.7, 11.5, 27, 39 GeV

Heavy quarks as a probe of QGP

p+p data:

- → baseline of heavy ion measurements.
- → test of pQCD calculations.
- Due to their large mass heavy quarks are primarily produced by gluon fusion in early stage of collision.
- → production rates calculable by pQCD.

 M. Gyulassy and Z. Lin, PRC 51, 2177 (1995)
- heavy ion data:
- Studying energy loss of heavy quarks.
- → independent way to extract properties of the medium.

ENERGY LOSS

M.Djordjevic PRL 94 (2004)

Quarkonia states in A+A

Charmonia: J/ψ , Ψ' , χ_c Bottomonia: $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$

Key Idea: Quarkonia melt in the QG plasma due to color screening of potential between heavy quarks

- Suppression of states is determined by T_C and their binding energy
- Lattice QCD: Evaluation of spectral functions ⇒ T_{melting}

Sequential disappearance of states:

- \Rightarrow Color screening \Rightarrow Deconfinement
- \Rightarrow QCD thermometer \Rightarrow Properties of QGP

When do states really melt?

$$T_{diss}(\psi') \approx T_{diss}(\chi_c) < T_{diss}(\Upsilon(3S)) < T_{diss}(J/\psi) \approx T_{diss}(\Upsilon(2S)) < T_{diss}(\Upsilon(1S))$$

Open heavy flavor

Direct reconstruction

- direct access to heavy quark kinematics
- hard to trigger (high energy trigger only for correlation measurements)
- smaller Branching Ratio (B.R.)
- large combinatorial background (need handle on decay vertex)

Indirect measurements through decay leptons

- can be triggered easily (high p_T)
- higher B.R.
- indirect access to the heavy quark kinematics
- mixing contribution from all charm and bottom hadron decays

D⁰ and D* signal in p+p and Au+Au 200 GeV

Different methods reproduce combinatorial background.

Consistent results from two background methods.

D⁰ and D* p_T spectra in p+p 200 GeV

 D^0 scaled by $N_{D0}/N_{cc} = 0.56^{[1]}$ D^* scaled by $N_{D^*}/N_{cc} = 0.22^{[1]}$ Consistent with FONLL^[2] upper limit.

 $\begin{aligned} &\text{Xsec} = \text{dN/dy}|^{\text{cc}}_{\text{y=0}} \text{ * F * } \sigma_{\text{pp}} \\ &\text{F = 4.7 \pm 0.7 scale to full} \\ &\text{rapidity.} \end{aligned}$

 $\sigma_{pp}(NSD) = 30 \text{ mb}$

The charm cross section at mid-rapidity is:

$$170 \pm 45 (\text{stat.})^{+37}_{-51} (\text{sys.}) \ \mu \text{b}$$

The charm total cross section is extracted as:

$$797 \pm 210 (\text{stat.})^{+208}_{-262} (\text{sys.}) \ \mu \text{b}$$

[1] C. Amsler et al. (Particle Data Group), PLB 667 (2008) 1.

[2] Fixed-Order Next-to-Leading Logarithm: M. Cacciari, PRL 95 (2005) 122001.

Charm cross section vs N_{bin}

YiFei Zhang, JPG 38, 124142 (2011)

All of the measurements are consistent.

Year 2003 d+Au : D^0 + e

Year 2009 p+p : $D^0 + D^*$

Year 2010 Au+Au: D^o

Assuming $N_{D0}/N_{cc} = 0.56$ does not change.

Charm cross section in Au+Au 200 GeV:

Mid-rapidity:

 $186 \pm 22 \text{ (stat.)} \pm 30 \text{ (sys.)} \pm 18 \text{ (norm.)} \mu \text{b}$

Total cross section:

 $876 \pm 103 \text{ (stat.)} \pm 211 \text{ (sys.)} \mu \text{b}$

[1] STAR d+Au: J. Adams, et al., PRL 94 (2005) 62301

[2] FONLL: M. Cacciari, PRL 95 (2005) 122001.

[3] NLO: R. Vogt, Eur. Phys. J.ST 155 (2008) 213

[4] PHENIX e: A. Adare, et al., PRL 97 (2006) 252002.

Charm cross section follows number of binary collisions scaling => Charm quarks are mostly produced via initial hard scatterings.

D⁰ nuclear modification factor Au+Au 200 GeV

BW (πKp): B. I. Abelev, et al., Phys. Rev. C 79 (2009) 34909.

Au+Au 200 GeV:

No obvious suppression at p_T < 3 GeV/c.

$$R_{\text{AA}}(p_T) = \frac{\text{Yield}_{\text{AA}}(p_T)}{\left\langle Nbin \right\rangle_{\text{AA}} \text{Yield}_{\text{pp}}(p_T)}$$

Non-photonic electrons

Non-photonic electrons in p+p 200GeV

STAR and PHENIX NPE results in p+p 200GeV collisions

✓ Are consistent within errors at pT > 2.5 GeV/c

NPE results are consistent with FONLL in p+p 200GeV collisions

PHENIX update p+p 200 GeV

- Combined Run5 and Run6 p+p statistics
- Smaller uncertainties
 - Allows more precise
 R_{AA} comparisons
- Increased p_⊤ range
- Consistent with previous results in overlap region

Separation of charm and bottom contribution

• ~30-60% of non-photonic electrons come from B meson in 200GeV p+p collisions.

Measurement of B and D meson spectra at RHIC

- p+p 200 GeV result
- ideal to get similar result from Au+Au but it's a lot harder.

Nuclear modification factor in Au+Au 200 GeV

- Non-photonic electrons suppressed at high-p_T
- Flow of NPE was measured

Non-photonic electrons in d+Au 200 GeV

- Peripheral R_{dAu} consistent with 1.0
- Evidence of CNM effects on open HF yields at 1<p_T<4 GeV/c for more central collisions

d+Au/Au+Au and Cu+Cu

 $< N_{coll} > CuCu = 150$

 $< N_{coll} > AuAu = 91$

$$< N_{coll} > dAu = 15$$

$$< N_{coll} > CuCu = 22.3$$

QUARKONIA J/ψ

Charmonium suppression

Phys. Rev. C 84, 054912 (2011)

- Overall suppression of J/ ψ is nearly identical between RHIC (200,62,39 GeV), SPS (17.2 GeV) , (& LHC)
- Forward-rapidity is suppressed more than Midrapidity

Forward rapidity suppression

Small or no J/ψ flow at RHIC!

Many theoretical expectations & option #2 probably ruled out?

At RHIC - Forward-rapidity J/ψ's are suppressed more than Mid-rapidity – Why?

- 1) Stronger forward rapidity suppression due to CNM effects?
- 2) Regeneration at mid-rapidity reduces suppression relative to forward (and gives net suppression similar to SPS)?

Cold nuclear matter effects – d+Au 200 GeV

CNM effects appear to provide a large fraction of the observed suppression; so difficult to conclude much w/o a thorough understanding of CNM and its extrapolation to A+A from d+A

• we have to understand CNM in a fundamental way in order to obtain reliable/quantitative extrapolations to A+A.

Cold nuclear matter effects - d+Au 200 GeV

centrality

Reasonable agreement with EPS09 nPDF + σ_{br} =4 mb for central collisions but not peripheral

CGC calculations can't reproduce mid-rapidity (*Nucl. Phys. A 770(2006) 40*)

EPS09 with linear thickness dependence fails to describe centrality dependence of forward rapidity region.

Cold nuclear matter effects – d+Au 200 GeV

path-length dependence

 Assume modification is dependent on the nuclear thickness

$$\Lambda(r_T) = \frac{1}{\rho_0} \int dz \, \rho(z, r_T)$$
Woods-
Saxon

Exponential: $M(r_T) = e^{-a\Lambda(r_T)}$

Linear: $M(r_T) = 1 - a\Lambda(r_T)$

Quadratic: $M(r_T) = 1 - a\Lambda(r_T)^2$

- Break-up has exponential dependence
- EPS09 & initial-state dE/dx have unknown dependences

The forward rapidity points suggests a quadratic or higher geometrical dependence

Cold nuclear matter effects – d+Au 200 GeV

Transverse momentum

- Similar suppression at mid & forward rapidity
- Suppression for $p_T < 4 \text{ GeV/c}$
- $R_{dAu} \approx 1 \text{ for } p_T > 4 \text{ GeV/c}$
- Backward rapidity: R_{dAu} > 1 for p_T > 2 GeV/c

High-p_T J/ψ measurement Au+Au 200 GeV

- . Suppression of J/ψ in central and semi-central collisions is observed.
- R_{AA} increases with p_T and decreases with centrality.
- At high p_T suppression is present only in central collisions.

QUARKONIA

$$Y -> e^+e^-$$

Models from M. Strickland and D. Bazow, arXiv:1112.2761v4

Upsilon in Au+Au 200 GeV

- R_{AA}: Observation of Upsilon suppression.
 (Including 2009 pp Preliminary dσ/dy)
 - Expect: Recombination: negligible, Hadronic co-mover absorption: negligible.
 - Suppression consistent with melting of excited states: deconfinement effects

Summary and outlook

- Heavy flavor is an important tool to understand medium properties.
- Results are interesting and challenging.

open charm measurement

- Charm hadrons; non-photonic electrons
- Charm production cross section.
- Separation of charm and bottom contribution.
- FONLL QCD describes the data rather well.

J/ψ

- SPS x RHIC mid x forward rapidity suppression.
- Systematic study of Cold nuclear effects.
- Less suppression at high-p_⊤ in STAR.

Y

Suppression of Y(1S+2S+3S) in central Au+Au observed.

STAR/PHENIX upgrades: charm mesons flow; Y states separation better charm/bottom separation

Y model comparison

- Incorporating lattice-based potentials, including real and imaginary parts
 - A: Free energy (disfavored),
 - B: Internal energy (consistent with data vs. N_{part})
- Includes sequential melting and feed-down contributions
- Dynamical expansion, variations in initial conditions (T, η/S)
 - Data indicate: $428 < T_0 < 442 \text{ MeV}$, $1 < 4\pi\eta/S < 3$

M. Strickland and D. Bazow, arXiv:1112.2761v4

Future of Heavy Flavor Measurement at STAR

Source: Phys. Rept. 462: 125-175, 2008

Source: Phys. Rept. 462: 125-175, 2008

Upsilon in p+p 200GeV

$$B_{ee} \frac{d\sigma}{dy} \bigg|_{y=0} = 114 \pm 38(stat)_{-24}^{+23}(sys)$$
 pb

Upsilon in d+Au 200GeV

$$B_{ee} \frac{d\sigma}{dy} \bigg|_{y=0} = 35 \pm 4(stat) \pm 5(sys)$$
 nb

$$R_{dAu} = 0.8 \pm 0.3(stat) \pm 0.2(sys)$$

Consistent with N_{bin} scaling of cross-section p+p - d+Au 200GeV

STAR with HFT

D* reconstruction

All triggers included.

More than 4σ signal at low p_T and very significant at high p_T - mostly from EMC-based high neutral energy triggers.

Charmonia in nuclear matter

- Production mechanism is not clear
- Observed J/ψ is a mixture of direct production + feeddown
 - All J/ ψ ~ 0.6 J/ ψ (Direct) + ~0.3 χ_c + ~0.1 ψ
- Suppression and enhancement in the "cold" nuclear medium
 - Nuclear Absorption, Gluon shadowing, initial state energy loss,
 Cropin effect and gluon saturation

Cronin effect and gluon saturation

H. Satz, Nucl. Phys. A (783):249-260(2007)

 $T \cong 3 T_{c}$

- Hot/dense medium effect
 - J/ψ, Υ dissociation, i.e. suppression
 - Recombination from uncorrelated charm pairs

σ_{CC}: comparison with other measurements

FIG. 1. Representative diagrams contributing to Y hadroproduction at orders α_S^3 (a), α_S^4 (b,c,d), α_S^5 (e,f). See discussions in the text.

Open heavy flavor

What can we learn at the LHC

- Higher c and b cross sections:
 - More abundant heavy flavour production
 - Better precision (reduced errors)

$$\sigma_{\mathit{LHC}}^{c\bar{c}} pprox 10 \cdot \sigma_{\mathit{RHIC}}^{c\bar{c}}$$
 $\sigma_{\mathit{LHC}}^{b\bar{b}} pprox 100 \cdot \frac{b\bar{b}}{\mathit{RHIC}}$

- High precision vertex detectors
 - Background removal
 - Separate c and b

High T: the potential between the quarks is modified.

- Charmonium suppression: longstanding QGP signature
 - Original idea: High T leads to Debye screening
 - Screening prevents heavy quark bound states from forming!
 - J/ψ suppression:
 - Matsui and Satz, Phys. Lett. B 178 (1986) 416
 - lattice calculations confirm screening effects
 - Nucl.Phys.Proc.Suppl.129: 560-562,2004

O. Kaczmarek, et al., Nucl.Phys.Proc.Suppl.129:560-562,2004

Better Knowledge about the Baseline

$$F_{\Psi'}^{J/\Psi} = \frac{B_{J/\Psi}^{\Psi'} \sigma_{\Psi'}}{\sigma_{J/\Psi}} = (9.6 \pm 2.4)\%$$

Consistent with world average!!!

$$F_{\chi_c}^{J/\Psi} = \frac{N_{\chi_c}}{N_{J/\Psi}} \frac{1}{\langle \varepsilon_{\chi_c} / \varepsilon_{J/\Psi} \rangle} = (32 \pm 9)\%$$

Non-photonic R_{AA} at RHIC

DGLV:

Djordjevic, PLB632, 81 (2006)

BDMPS:

Armesto, et al., PLB 637, 362 (2006)

T-Matrix:

Van Hees et al., PRL100,192301(2008).

Coll. Dissoc.

R. Sharma et al., PRC 80, 054902(2009).

Ads/CFT:

W. Horowitz Ph.D thesis.

RL+ Coll.

J. Aichelin et al., SQM11

- ☐ Models with different or similar mechanisms can or can not describe the data
 - Which one is right and what are missing?

STAR detector and Particle ID

Large acceptance |η|<1, 0<φ<2π

- Time Projection Chamber dE/dx, momentum
- Time Of Flight detector particle velocity 1/β
- ElectroMagnetical Calorimeter
 E/p, single tower/topological Trigger

PHENIX detector and Particle ID

Central Arms | η | < 0.35

Identified charged hadrons

e[±], π⁰, η

Direct Photon

J/Ψ, Ψ',Χ_c

Heavy Flavor

Muon Arms 1.2 < | η | < 2.4

- J/Ψ, Υ
- Unidentified charged hadrons
- Heavy Flavor

MPC 3.1 <
$$|\eta|$$
 < 3.9 π^0 , η

2

STAR J/ψ spectra in Au+Au 200GeV

Phys. Rev. Lett. 98, 232301 (2007) JPG 37, 085104 (2010) ArXiv:1101.1912 (2011)

Consistent with other RHIC measurements. Moreover we extend pT region up to 10GeV/c.

Nuclear modification factor

- Hard probes produced in hard scatterings in initial phase of collision
- Nuclear matter influences the final particle production

 e.g. production of particles at given p_T
 supresion of particle production of particular type
- Nuclear modification factor quantification of nuclear effects R_{AA}

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle Nbin \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

jaroslav.bielcık@ıjıı.cvut.cz

Cold nuclear matter effects

- Nuclear Shadowing Modification of PDF's for nucleons bound in nuclei.
 - Parametrizations of (mostly) DIS data (ex. EKS98, nDSg, EPS09).
- Nuclear Break-up Break-up of cc pair through collisions with nucleons.
 - Usually parametrized using break-up cross section.
- Cronin Effect Broadening of the pT distribution through scattering of incoming partons.
- Initial State Energy Loss decrease in parton momentum due to soft scatterings while propagating through colliding nucleus.

Cold nuclear matter effects

