Femtoscopic results in pp and Pb-Pb collisions from ALICE

Dhevan Gangadharan (OSU) for the ALICE Collaboration ICFP 2012
Crete, Greece

Femtoscopy

The study of particle correlations on the scale of femto-meters.

We study 3 sources of femtoscopic correlations:

Quantum Statistics

Coulomb Interactions

Strong Interactions

100% Chaotic Sources

Anti-bunching of fermions.

100% Coherent Sources

- Minimized ΔxΔp uncertainty.
- No HBT effect.

All three can be used to learn about the particle emitting sources in the collisions.

A Superposition of Particle Emitting Sources

We study the properties of the particle emitting sources:

- Size and shape of regions of homogeneity?
- Chaotic or coherent particle emission?
- Strength of source-source dynamics?

2-particle Correlations

 p_i = 4-momentum of particle i

$$q^{\mu} = (p_1 - p_2)^{\mu}$$

Average Momentum

$$K^{\mu} = \frac{(p_1 + p_2)^{\mu}}{2}$$

Same-Event pairs

$$C_2(q, K) = \frac{N_2(p_1, p_2)}{N_1(p_1)N_1(p_2)}$$

Mixed-Event pairs

Projections

1-D Invariant Relative Momentum

$$q_{inv} = \sqrt{-q^{\mu}q_{\mu}}$$

$$q_{out}$$
, q_{side} , q_{long}

Early ALICE Results

2-pion same-charge correlations pp \sqrt{s} = 7 TeV

ALICE, Phys. Rev. D 84: 112004

2-pion same-charge correlations Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV

Geometry of the Source

Space-time emission function

 $\frac{\text{Parameterize s with a Gaussian}}{\text{C}_2 \text{ is then also a Gaussian}}$ Evaluate in longitudinally co-moving system (LCMS)

$$C_2(q, K) = 1 + \lambda e^{-(R_{out}q_{out})^2 - (R_{side}q_{side})^2 - (R_{long}q_{long})^2}$$
 • No FSI

$$C_{2}(\boldsymbol{q}, \boldsymbol{K}) = (1 - \lambda) + \lambda K (1 + e^{-(R_{out}q_{out})^{2} - (R_{side}q_{side})^{2} - (R_{long}q_{long})^{2}})$$
Pair dilution factor Coulomb factor

 With Coulomb Repulsion

6

Early ALICE Results: k, dependence

$$k_t = \left| \frac{p_1 + p_2}{2} \right|$$

- Radii decrease with increasing pion momentum in both systems
- Possible interpretation is radial flow

7

ALICE Compared to the World

- Both systems scale linearly.
- No universal pp/AA scaling.
- R_{long} in great agreement with world data.
- R_{side} in good agreement with world data.
- R_{out} in fair agreement with world data.

K⁰_S Femtoscopy

pp $\sqrt{s} = 7 \text{ TeV}$

Multiplicity Classes: M1-11, M12-22, M23-up

- Baseline estimated with PYTHIA.
- Strong interactions significant.
- Radii consistent with that from pion-pion channel.
- Low M Radii rise with kt for pions but not for K⁰_S.
- Also being done in Pb-Pb 2.76 TeV!

K⁺⁻ Femtoscopy

pp
$$\sqrt{s} = 7 \text{ TeV}$$

- Low M Radii rise for charged kaons but not for K⁰_S
- Also being done in Pb-Pb 2.76 TeV!

Ongoing Measurement in Pb-Pb: Chaoticity

Why should we bother looking again?

 NA44, WA98, and STAR have previously searched for coherent pion radiation. However, Coulomb corrections were greatly over-estimated.

 \bigcap r

Quantum coherence affects all charge types and all orders of correlation functions

Akkelin, Lednicky, Sinyukov PRC 65:064904 (2002)

G(p) = Coherent fraction of pions with momentum p

$$C_{QS}^{++}(p,q=0) = 2 - 4/5*G^{2}(p)$$

 $C_{QS}^{+-}(p,q=0) = 1 + 1/5*G^{2}(p)$
 $C_{QS}^{-00}(p,q=0) = 2 - 1/5*G^{2}(p)$
 $C_{QS}^{-+0}(p,q=0) = 1 - 2/5*G^{2}(p)$

Also, C_{QS}^{+++} and C_{QS}^{++-} provide additional sensitivity to coherent pion radiation.

 Global fit to 2-particle and 3-particle (same and mixed-charge) correlations to better determine the coherent fraction.

Conclusions

- Femtoscopic radii much larger at the LHC than RHIC (~x2).
- Radii in pp and AA show linear scaling with (dN/dη)^{1/3}.
 - They are very different however.
- Decreasing of radii with increasing k_t observed in Pb-Pb as well as pp.
 - Pions and kaons have consistent trends.
 - Possibly caused by flow in both collision systems.
- Lowest multiplicity bin in pp show an increase of the radii with k₁.
 - Possibly signals a transition from longitudinal flow to hydrodynamic flow.

Much more to come.....

Backup Slides

Scaling

Radii scale linearly for each kt bin. This possibly means that there freeze-out occurs at a constant particle density.

Scaling Slopes

Hydro-Kinetic Model Comparison

