Event-by-event hydrodynamics and correlations in relativistic heavy-ion collisions

Wojciech Broniowski and Piotr Bożek

Institute of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce

1st International Conference on New Frontiers in Physics (ICFP 2012) 10-16 June 2012, Kolymbari, Creta, Greece

(based on PRC 85 (2012) 044910, PRC 83 (2011) 034911, arXiv:1204.3580)

Initial fluctuations

Correlations carry rich info on the physics of the heavy-ion collision Our approach: initial \to hydro \to statistical hadronization

- Initial phase "geometric fluctuations" from the distribution of nuclei [Miller & Snellings 2003, PHOBOS 2006, Andrade et al. 2006]
- Hydrodynamics here deterministic
- Statistical hadronization fluctuations from a finite number of hadrons

flow/non-flow? jets?

[Takahashi et al. 2009, Alver et al. 2010, Staig & Shuryak 2010, Moscy & Sorensen 2010, Luzum 2011, Schenke et al. 2011, Qiu et al. 2012, Kapusta, Mueller & Stephanov 2012, ..., Trainor]

ション ふゆ くち くち くち くち

Initial fluctuations

Correlations carry rich info on the physics of the heavy-ion collision Our approach: initial \to hydro \to statistical hadronization

- Initial phase "geometric fluctuations" from the distribution of nuclei [Miller & Snellings 2003, PHOBOS 2006, Andrade et al. 2006]
- Hydrodynamics here deterministic
- Statistical hadronization fluctuations from a finite number of hadrons

flow/non-flow? jets?

[Takahashi et al. 2009, Alver et al. 2010, Staig & Shuryak 2010, Moscy & Sorensen 2010, Luzum 2011, Schenke et al. 2011, Qiu et al. 2012, Kapusta, Mueller & Stephanov 2012, ..., Trainor]

Local charge conservation (balancing) very important for 2-particle correlations \rightarrow explanation of the data

Initial fluctuations

transverse-plane view

Two typical configuration of wounded nucleons in the transverse plane generated with GLISSANDO and the corresponding isentropes at s = 0.05, 0.2, and 0.4 GeV⁻³.

Hydrodynamics

3+1D viscous event-by-event hydrodynamics, tuned to reproduce the one-body RHIC data [Bożek 2012] $\tau_{\rm init} = 0.6$ fm/c, $\eta/s = 0.08$ (shear), $\zeta/s = 0.04$ (bulk), $T_f = 140$ MeV

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Hydrodynamics

3+1D viscous event-by-event hydrodynamics, tuned to reproduce the one-body RHIC data [Bożek 2012] $\tau_{\rm init} = 0.6$ fm/c, $\eta/s = 0.08$ (shear), $\zeta/s = 0.04$ (bulk), $T_f = 140$ MeV

sample results:

solid: e-by-e, dashed: averaged initial condition

Final fluctuations

Statistical hadronization via Frye-Cooper formula + resonance decays (THERMINATOR)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ = 三 のへで

Two-particle two-dimensional correlations

Definition and results

$$R_2(\Delta\eta, \Delta\phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta\eta, \Delta\phi)}{N_{\rm mixed}^{\rm pairs}(\Delta\eta, \Delta\phi)}$$

 $(0.8 < p_T < 4 \text{ GeV}$ - "unbiased")

STAR data, 2007

Two-particle two-dimensional correlations

Definition and results

$$R_2(\Delta\eta, \Delta\phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta\eta, \Delta\phi)}{N_{\rm mixed}^{\rm pairs}(\Delta\eta, \Delta\phi)}$$

$$(0.8 < p_T < 4 \text{ GeV} - \text{``unbiased''})$$

STAR data, 2007

No balancing

0-5%

200

Charge balancing (from resonance decays and "direct")

transverse-plane view of the expanding system at freeze-out

direct balancing: pair emitted from the neutral hydro medium from the same space-time point resonances also contribute

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Two-particle two-dimensional correlations

Definition and results

$$R_2(\Delta\eta,\Delta\phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta\eta,\Delta\phi)}{N_{\rm mixed}^{\rm pairs}(\Delta\eta,\Delta\phi)}$$

 $(0.8 < p_T < 4 \text{ GeV})$

STAR data

With balancing!

0-5%

0-5%

900

Two-particle two-dimensional correlations

Summary

2D balance functions

$$B(\Delta\eta, \Delta\phi) = \frac{\langle N_{+-} - N_{++} \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+} - N_{--} \rangle}{\langle N_{-} \rangle}$$

$$c = 0 - 5\%$$

・ロト ・個ト ・モト ・モト

æ

2D balance functions

big (direct balancing)

small (resonance decays only)

・ロト ・ 日 ・ モート ・ 田 ・ うへの

balancing \rightarrow collimation important non-flow effect, a way to look at the data

Balance functions in relative rapidity

[Jeon & Pratt 2002, Bass et al. 2010, Bożek et al. 2005]

Marginal distribution of the above 2D function: the charge balance function in $\Delta\eta$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

comparison to the STAR data solid: $T_f = 140$ MeV, dashed: $T_f = 150$ MeV

$$v_n^2(\Delta \eta)$$
$$v_n^2(\Delta \eta) = \int d\Delta \phi \, \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$$

comparison to the STAR data, v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely flat solid: $T_f = 140$ MeV, dashed: $T_f = 150$ MeV balancing \rightarrow explanation of the fall-off of the same-side ridge in $\Delta \eta$

$$v_n^2(\Delta \eta)$$
$$v_n^2(\Delta \eta) = \int d\Delta \phi \, \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$$

comparison to the STAR data, v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely flat solid: $T_f = 140$ MeV, dashed: $T_f = 150$ MeV balancing \rightarrow explanation of the fall-off of the same-side ridge in $\Delta \eta$

$$v_n^2(\Delta \eta)$$
$$v_n^2(\Delta \eta) = \int d\Delta \phi \, \cos(n\Delta \phi) R_2(\Delta \eta, \Delta \phi)$$

comparison to the STAR data, v_2^2 , v_3^2 fat: with balancing, thin: no balancing - completely flat solid: $T_f = 140$ MeV, dashed: $T_f = 150$ MeV balancing \rightarrow explanation of the fall-off of the same-side ridge in $\Delta \eta$

Transverse momentum conservation

transverse-momentum conservation lowers

 $v_1^2(\Delta \eta) \equiv \langle \cos(\phi_1 - \phi_2) \rangle$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

comparison to the STAR data

(our statistics too small for the "parity-violation" observable $\langle \cos(\phi_1 + \phi_2 - 2\phi_3) \rangle$)

Definition

Similar to R_2 , but weighting with p_T :

$$C(\Delta\eta, \Delta\phi) = \frac{\left\langle \sum_{i=1}^{n_1} \sum_{i\neq j=1}^{n_2} p_{Ti} p_{Tj} \right\rangle - \left\langle \sum_{i=1}^{n_1} p_{Ti} \right\rangle \left\langle \sum_{j=1}^{n_2} p_{Tj} \right\rangle}{\left\langle \sum_{i=1}^{n_1} 1_i \right\rangle \left\langle \sum_{j=1}^{n_2} 1_j \right\rangle}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \square Differential p_T fluctuations

$(0.2 < p_T < 2 \text{ GeV})$ \leftarrow STAR With charge balancing and p_T conservation

0-5%

 \square Differential p_T fluctuations

 $\begin{array}{l} (0.2 < p_T < 2 \ {\rm GeV}) \\ \leftarrow \ {\rm STAR} \\ {\rm With \ charge \ balancing \ and \ } p_T \\ {\rm conservation} \\ \end{array}$

 \square Differential p_T fluctuations

 $(0.2 < p_T < 2 \text{ GeV})$ \leftarrow STAR With charge balancing and p_T conservation

60-70%

Conclusions

- E-by-e hydro with charge balancing in semi-quantitative agreement with the (soft) data for 2-particle 2D correlations, dependence on the relative charge of the pair appears in a natural way
- Charge balancing explains the shape of the same-side ridge major non-flow effect
- \blacksquare Dependence of the flow coefficients on $\Delta\eta$ reproduced
- **Transverse-momentum conservation important for** v_1^2
- Differential transverse-momentum conservation also reproduced
- (not covered) Transverse-momentum fluctuations follow from initial size fluctuations [Bożek & Broniowski 2012]
- (not covered) Torque effect FB reaction plane correlations [Moreira et al. 2011]

Soft effects dependent on the initial fluctuations in the transverse plane are properly reproduced with 3+1D viscous e-by-e hydro with the Glauber initial conditions and statistical hadronization including charge balancing

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@