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BRAHMS at RHIC
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Longitudinal dynamics at RHIC
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Limiting Fragmentation
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Stopping: Baryons lose 75% of momentum

- An alternative
s Prediction LE e
— 50
0 for LHC o
3130 stopping is to
AS 2 measure the
O\C/J 2.5¢ E distribution
wn of all particles
S 2
> 0
;_a 1.5_— ; =
2 L Vv E917
LS A E802/E866
- t B NA49 (PbPb)
05— . ® BRAHMS 62.4 GeV
. | | | | 1* BlRAH}VIS 2100 GFV
OOHIIIHHZHH3HIl4llllySHlI6HH7HHSHH9HHIO

)



A slice through CMS
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Forward detectors
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Why multiplicity & transverse energy?

* Both are sensitive to the entropy of the system,
combining both tells us the energy/particle

» dE+/dn gives a rough estimate of the energy
density

* Looking over a large pseudo-rapidity range we
can test models of longitudinal expansion, such
as Landau flow

» At very forward pseudo-rapidity we should be
probing the density of soft low x partons which
may be interesting for saturation studies.

8 This talk is based upon JHEP 07 (2011) 076 for multiplicity and arXiv:1205.2488 for E;
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dN.,/dn vs n for various centralities
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dNg/dn vs N, and RHIC data
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dN./dn vs N, for data & models
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Multiplicity vs beam energy for A+A, pp
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Measuring transverse energy

dET Ci(ln]) X Erj(in])

an = G N @ x A

E;;is the energy in a given calorimeter cell and we sum over
all calorimeter cells j within a given An region.

C.(n)= MC enerqgy into the An reqgion
1 MC energy reconstructed in calorimeters

C,(n) = 1.6 for n<2 falling to = 1.1 by n =4 rising to 2 at n=5
C, depends only weekly on centrality.

C, accounts for dead areas of the forward calorimeter that are
not in GEANT. C, varies 0.98 at n=3 to 0.85 at = 0.98 at n=5
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Systematic errors for E measurement

17| < 2.65 265 < || <52
(Npart) =16 | (Npart) =394 | (Npart) = 16 | (Npart) = 394
Energy scale 2% 2% 10% 10%
MC model (1.2-12)% (1.2-4.9)% (0.5-6.8)% (0.1-2.3)%
Vertex distribution 2% 2% 2% 2%
Symmetry about 7 =0 0.5% 0.5% 0.3% 0.3%
Auto-correlations 1.5% 1.5% 1.0% 1.0%
Calorimeter noise (14-18)% (0.27-0.32)% | (4.0-7.3)% (0.1-0.2)%
Centrality determination 6.7% 0.5% 6.7% 0.5%
Total (14-22)% (3.5-5.9)% (11-14)% (10-11)%

The understanding of energy scale and calorimeter noise produce the
largest systematic errors. The energy scale was initially set with test beam
data and radioactive sources and for the central calorimeters this was
checked by comparing the energy isolated hadrons to the momenta of
charged tracks. For the forward region we used Z=>»e*e-. The noise was
studied by comparing zero bias with very peripheral events. Statistical errors
are negligible in all cases.
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dE;/dn vs n
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dE;/dn vs N, and n
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(dE /an)/((N__ }/2) (GeV)
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dE-/dn at n=0 versus Vs
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E;/N,, rises by factor of 3.2 from RHIC
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E. rises faster with

Vs than multiplicity

ETINpa,r,t rises by factor of 2.2 from RHIC
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Conclusions and outlook

» dE;/dn vs n is wider than predicted by Landau flow
and is wider for peripheral than central events

« Both N, and E; increase as a power law in s from
Vs ~8 GeV to 2.76 TeV but E- increases faster

» E;/Ng, increases with both Vs and N_.
« dE{/dn =2.1 TeV = energy density = 15 GeV/fm?3

* We are working to extend our n coverage to 6.6
using CASTOR to estimate stopping at 2.76 TeV.

* Forward (and backward) detectors will give unique

information on pPb collisions in November.
22
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