

Overview of results from ALICE at the LHC

Panos Christakoglou Nikhef

for the ALICE Collaboration

12.06.2012

Panos.Christakoglou@nikhef.nl - International Conference on New Frontiers in Physics

Introduction

Lattice QCD

- At the critical temperature a strong increase in the degrees of freedom
 - o gluons, quarks → deconfinement
- Transition expected to occur around 0.5 GeV/fm³

Borsanyi et al. JHEP 11 (2010) 077

Explore the properties of the Quark Gluon Plasma

- What happens when you heat and compress matter to very high temperatures and densities?
- The macroscopic quantities of the QGP will give us better understanding of the underlying microscopic theory (QCD) in the non-perturbative regime
- Different accelerators have contributed to the mapping of the "experimental phase diagram"

Outline: Experimental tools covered in this talk

12.06.2012

The ALICE detector

12.06.2012

Panos.Christakoglou@nikhef.nl - International Conference on New Frontiers in Physics

Multiplicity measurement

$dN_{ch}/d\eta = 1584 \pm 4$ (stat.) ± 76 (syst.)

- Increase of (dN_{ch}/dη) larger than ln√s as initially suggested by the RHIC measurements
- □ Increase of $(dN_{ch}/d\eta)/\langle N_{part}\rangle/2$ with \sqrt{s} faster in AA than in p-p

○ ~s^{0.11} for pp

- ~s^{0.15} for Pb-Pb
- Larger value than most models predicted

- Centrality dependence at the LHC similar to the one reported at RHIC energies
 - RHIC points scaled by ~2.1
 - Similarity due to centrality dependent shadowing of the nuclear PDF?

Phys. Rev. Lett. 105, 252301 (2010) Phys. Rev. Lett. 106, 032301 (2011)

Particle spectra in pp used to

Reconstruction and PID in ALICE: Jouri Belikov, Tuesday@19:00, Parallel I

- constrain phenomenological models (many input parameters)
- reference for Pb-Pb (to be discussed later)
- Particle spectra/ratios in A-A described by statistical models with only a handful of parameters (e.g. T_{kin}, T_{chem}, μ_B, γ_s)

ALICE uses all available PID techniques to provide identification on a track-by-track basis (low momentum) and with statistical approaches (e.g. dE/dx in the relativistic rise)

Identified particle spectra: collective radial flow

- Strongly interacting medium + pressure gradient: isotropic radial flow
- □ Stronger boost for heavier particles
- □ Harder spectra at the LHC compared to RHIC
- □ Blast wave fit → average radial velocity and kinetic freeze-out temperature
 - Central Pb-Pb collisions at the LHC $<\beta>\sim0.66c$
 - ~10% larger < β > at the LHC compared to RHIC

- Spectra compared to hydro calculations
 - Inclusion of the rescattering phase (via UrQMD) essential to describe the spectra for the most central collisions

Particle spectra: Martha Spyropoulou Stassinaki, Monday@20:15, Parallel II

Elliptic flow

Pressure gradient transforms the initial spatial momentum-space anisotropy

Superposition of independent pp collisions: momenta pointed at random relative to reaction plane

Azimuthal distribution described by a Fourier expansion

Flow from RHIC to LHC: Raimond Snellings, Monday@11:20, Plenary II

Evolution as a **bulk** <u>system</u>: Pressure gradients (larger inplane) push bulk "out" \rightarrow "flow"

Connection to $\eta/s \rightarrow RHIC$ values close to the lower bound of $1/4\pi$ (hbar=c=1)

S. Voloshin and Y. Zhang, Z. Phys. C70, 665 (1996)

 $v_n(p_t, y) = \langle \cos(n(f - Y_n)) \rangle$

Elliptic flow: results

- Similar centrality dependence but ~30% higher integrated v₂ value wrt RHIC
- Predicted by hydro for a liquid with small value of shear viscosity
 - "perfect liquid" picture applies also at the LHC

- Particle mass dependence well reproduced by hydro calculations
 - \circ Stronger push for heavier particles by radial flow
- Inclusion of a hadronic afterburner essential to match the differential v₂ of protons

- ❑ Initial geometry not described by the ideal almond shape
 - Fluctuations of initial energy/pressure distributions lead to "irregular" shapes that fluctuate event-by-event
 - Higher (odd) harmonics each having its one symmetry plane
- Higher harmonics more sensitive to the value of shear viscosity

But...initial conditions not known precisely enough (model dependent)
Data can be described by different combinations of initial conditions + η/s

Phys. Rev. Lett. 107, 032301 (2011)

- $\hfill\square$ Models can not describe successfully the elliptic and triangular flow with the same values of η/s
- Similar mass splitting expected by hydro

- □ LHC offers the possibility to study hard processes
 - \circ $\;$ larger cross sections for high-p_t and larger mass particles
- □ Two ways of studying the medium effects
 - \circ Compare yields of high-p_t particles in A-A to pp collisions
 - o Jet reconstruction

Nuclear modification factor

$$R_{AA}(p_t) = \frac{\left(1/N_{events}^{AA}\right)d^2 N^{AA} / dp_t dh}{\left(N_{coll}\right)\left(1/N_{events}^{pp}\right)d^2 N^{pp} / dp_t dh}$$

- At low p_t: R_{AA} < 1 and rising due to thermal production
- At high p_t: R_{AA} = 1 in case there are no modifications from the medium
 - Clear deviation of R_{AA} from unity, even for peripheral events
 - Larger suppression for central collisions
 - Consistent with the picture of radiative energy loss due to increasing path length of partons in the medium

LI-PREL-1023

□ Select pions/protons using the dE/dx in the relativistic rise

□ Smaller R_{AA} than the non-identified particles for $p_t < 6$ GeV/c

□ Compatible with the R_{AA} of non-identified particles for $p_t > 6GeV/c$

□ Larger R_{AA} than the non-identified particles for $p_t < 6$ GeV/c

□ Compatible with the R_{AA} of non-identified particles for $p_t > 6GeV/c$

□ Larger R_{AA} than the non-identified particles for $p_t < 6$ GeV/c for K_s^0 and Λ

• Manifestation of radial flow?

 \square R_{AA} for K⁰_s and Λ compatible with the one for non-identified particles for p_t > 6GeV/c

- □ Theory predicts a hierarchy in the energy loss for gluons, light and heavy quarks
 - $\Delta Eg > \Delta E(u,d,s) > \Delta E(c,b) \rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$ (dead cone effect)
- At the LHC, we can profit from the higher production cross-section for c and b quarks to test this prediction

Open heavy-flavor measurements: Sarah Louise Lapointe, Thursday@19:00, Parallel IV

arXiv:1203.2160 [nucl-ex]

- □ D⁰, D⁺, D^{*} R_{AA} compatible within statistical uncertainties
- □ For 0-20% a suppression of ~3-4 for $p_t > 5GeV/c$
- □ For 40-80% a suppression of ~1-3 for $p_t > 5GeV/c$
- □ Similar R_{AA} with non-identified charges but systematically higher

Heavy flavor elliptic flow

- □ Elliptic flow measured with the event plane method at two centralities
- **\Box** First indication of a non-vanishing v₂ for D⁰
- Elliptic flow values compatible with the charged hadrons within the large uncertainties.

Instead of a summary...

And many more...

- □ Chiral magnetic effect studies
- Charged hadron correlations with the balance functions
- □ Fluctuations: electric charge, transverse momentum, multiplicity

p-Pb running in 2012

12.06.2012

Thermal model

sdd

Identified particle spectra (cont.)

- □ Spectra compared to hydro calculations
 - VISH2+1: pure hydro
 - VISHNU: hydro coupled to the hadronic afterburner
- Reasonable description from pure hydro

Elliptic flow at high pt

- Sensitive to path length dependence of jet quenching
- **Given Set Scheme Sche**
- **Quadrangular flow** $(v_4) \sim 0$ for $p_t > 8 \text{GeV/c}$

