

Recent results from PHENIX on the evolution of hot QCD matter

Norbert Novitzky for PHENIX collaboration University of Jyväskylä, Finland Helsinki Institute of Physics, Finland

Norbert Novitzky for PHENIX

PHENIX @ RHIC

PHENIX: Pioneering High Energy Nuclear Interaction eXperiment

- The Relativistic Heavy Ion Collider (RHIC):
- The beam species: p Cu Au U
- •Heavy ion collisions 7.7-200 GeV
- Asymmetric collisions
- Polarization of proton beams

Measured: •p+p @ 62.4 - 510 GeV (polarized) •Au+Au @ 7.7 - 200 GeV •Cu+Cu @ 22.4 - 200 GeV •d+Au @ 200 GeV •U+U @ 193 GeV •Cu+Au @ 200 GeV

PHENIX detector

Little Big Bang

Time:	fraction of fm/c:		order of one fm/c	several fm/c
Process:	Hard scattering		Thermalization	Expansion
QGP probe	Jet quenching		High temperatures	Collective motion
	Opacity	Norbert	Luminosity	Fluidity

Little Big Bang

Parton Energy Loss

Medium-induced gluon bremsstrahlung. Essentially four categories:

In-medium Energy Loss

- Opacity expansion (GLV) : Gyulassy, Levai,. Vitev, PLB538, 2002
- Multiple soft scattering (BDMPS-Z-ASW) :Wiedemann, NPB588, 2000
- Higher-twist (HT): Guo, Wang, PRL. 85, 3591, 2000
- Thermal field theory (AMY): Arnold, Moore, Yaffe, JHEP 11, 001(2000)

All models:

Models successfully describe the rate and p_T dependence of the jet quenching. Large systematic uncertainties e.g. [*Phys.Rev.*, **2010**, C81, 024909] Testing against multiple observables is essential to test physics of the models Norbert Novitzky for PHENIX

Nuclear modification factor

Motivation – Low Energy Scan

Large suppression of particles was observed (up to factor of 5) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

No suppression of particles was observed in d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Convincing evidence for the **final state partonic** interaction - emergence of **sQGP**

Where the suppression starts to dominate? How the suppression depends on p_T , system size, $\sqrt{s_{NN}}$?

Norbert Novitzky for PHENIX

PH淡E

R_{AA} in energy scan

p_T dependence:

- 39 GeV shows strong suppression in the most central collision.
- The 62.4 and 200 GeV R_{AA} data points are comparable

Centrality dependence:

- In mid-peripheral collision, 39 GeV no suppression, 62.4-200 GeV suppressed Theory:
- GLV model calculations are showing similar trend, but not fitting the data well. (two calculation with gluon mean free path +30%)

R_{AA} in averaged over $p_{\rm T}$

 R_{AA} in different $\sqrt{s_{NN}}$:

- •62.4-200 GeV are strongly suppressed
- •39.0 GeV data shows suppression for higher centrality only (N_{part}>100)

•For p_T > 6 GeV/c the 62.4 and 200 GeV data points are comparable

The suppression is most significant in most central collisions and it disappears earlier in lower $\sqrt{s_{NN}}$

Opacity – Summary

 Reaching high enough collision energy we create an opaque medium for partons

- R_{AA} measured in Au+Au and d+Au collisions shows the suppression is final state effect
- The opacity evolves as function of centrality, $\sqrt{s_{NN}}$, p_T
- An opaque medium is created in 39 GeV collision, but the opaqueness disappears in lower centralities

Little Big Bang

Nuclear Geometry and Hydrodynamic flow

PH^{*}ENIX

Motivation – Low Energy Scan

The hydrodynamical flow of particles were measured in large range of collision energy.

• From few GeV up to few TeV

•Results follows the global trend for averaged v_2

•Flow seems to saturate $\sqrt{s_{NN}}$ > 100-200 GeV - indicates ideal "hydro".

Evolution between SPS and RHIC energies - same trend ?

Norbert Novitzky for PHENIX

v_n as a function of p_T in Energy Scan

• Various beam energy: 39, 62, 200 GeV

• No significant beam energy dependence within uncertainties

 v_n follows expected behavior down to 39 GeV

v_n as a function of centrality

- Various beam energy: 39, 62, 200 GeV
- Increasing flow towards more peripheral collisions
- Averaged v_n follows also expected behavior

Fluidity – Summary

- The plasma created in heavy ion collisions has hydrodynamical behavior
- The flow is depending on initial geometry of the collision
- v_n shows the same behavior in collisions of Au+Au at $\sqrt{s_{NN}} = 39 200 \text{ GeV}$
- Flow follow the expected behavior in $\sqrt{s_{NN}}$

Little Big Bang

Schematic View of Thermal Photons

- Longitudinally and radially expanding fire ball in "local equilibrium"
 - Real and virtual photons
 - Integrated over space-time
 - Local equilibrium:
- Real and virtual photon momentum spectrum
 - Temperature information
 - sensitive to early times due to $e^{-\omega/T}$
 - Collective expansion, $\omega = p_{\mu}u^{\mu}$
 - Radial expansion results in blue and red shift
 - Longitudinal expansion results in red shift

Photons

Production of photons:

սիսիսիսիսիսիսիսիսիսիսիսիսիսիսիսիսիսիս

20 22 p_{_} (GeV/c)

20

18

16

Prompt Photon in Au+Au

PHENIX arXiv:1205.5533

Thermal Photon in Au+Au PHENIX Phys. Rev. C 81 (2010) 034911

 $\gamma^* (m \rightarrow 0) = \gamma; m \le p_T$

- Direct photons from real photons:
 - Measure inclusive photons and subtract decay photons
- Direct photons from virtual photons:
 - Measure e^+e^- pairs at $m_{\pi} < m << p_T$

Thermal photon v₂

Thermal photon Puzzle

Photons – Summary

- Photon spectrum was measured at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Thermal photons were measured by PHENIX
- Thermal photon puzzle:
 - Two independent measurements were done to determine the v₂ of photons
 - Theory cannot explain yet the high yield and high flow of thermal photons

THANK YOU

Backup

Elliptic flow of Photons How to determine elliptic flow of thermal photons?

- - Establish R_v, i.e. fraction of thermal photons in inclusive photon yield
 - Measure inclusive photon v₂^{incl}
 - Predict hadron decay photon v_2^{hadr} from pion $v_2^{\pi 0}$
 - Subtract hadron decay contribution

Large v_2 of low p_T thermal photon

Thermal Photons

- PHENIX has developed new method to detect direct photons:
 - Use photon conversions to e⁺e⁻
 - Tag contribution from π^0 decays
 - Independent systematic uncertainties

Thermal photons observed in virtual and real photons consistent within systematic uncertainties

Prompt Photon in p+p and d+Au

PHENIX photon data

- High p_T (4 to 25 GeV) from calorimeter
- Low p_T (<4 GeV) from virtual photons
- p+p data consistent with pQCD
 - x_T scaling of cross section $(\sqrt{s})^{4.5}$
 - NLO calculation agree well with data
- d+Au data consistent with N_{coll} scaling
 - No evidence for cold nuclear matter effects

