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PHENIX @ RHIC 
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The Relativistic Heavy Ion Collider 

(RHIC): 

•The beam species: p – Cu – Au – U  

 

•Heavy ion collisions 7.7-200 GeV 

 

•Asymmetric collisions 

 

•Polarization of proton beams 

 

Measured: 

•p+p @ 62.4 - 510 GeV (polarized) 

•Au+Au @ 7.7 - 200 GeV 

•Cu+Cu @ 22.4 - 200 GeV 

•d+Au @ 200 GeV 

•U+U @ 193 GeV 

•Cu+Au @ 200 GeV 

 

PHENIX: Pioneering High Energy 
Nuclear Interaction eXperiment 



PHENIX detector 
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Little Big Bang 
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Parton Energy Loss  
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Essentially four categories: 
– Opacity expansion (GLV)  : Gyulassy, Levai,. Vitev, PLB538, 2002 

– Multiple soft scattering (BDMPS-Z-ASW) :Wiedemann, NPB588, 2000 

– Higher-twist (HT): Guo, Wang, PRL. 85, 3591, 2000 

– Thermal field theory (AMY):  Arnold, Moore, Yaffe, JHEP 11, 001(2000) 

 

All models:  
Models successfully describe the rate and pT dependence of the jet quenching. 

Large systematic uncertainties e.g. [Phys.Rev., 2010, C81, 024909] 

Testing against multiple observables is essential to test physics of the models 

Hard parton propagating through  

excited QGP:  

Medium-induced gluon bremsstrahlung. 



Nuclear modification factor 
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d2N AA / dpTdh

Nbinary d
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Motivation –  
Low Energy Scan 
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Where the suppression starts to dominate? 
How the suppression depends on pT, system size, √sNN? 

Large suppression of particles was 
observed (up to factor of 5) in Au+Au 
collisions at √sNN = 200 GeV 

No suppression of particles was observed 
in d+Au collisions at √sNN = 200 GeV 

Convincing evidence for the final state partonic interaction - emergence of sQGP 

x5 



RAA in energy scan 
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pT dependence: 
• 39 GeV shows strong suppression in the most central collision. 
• The 62.4 and 200 GeV RAA data points are comparable 
Centrality dependence: 
• In mid-peripheral collision, 39 GeV no suppression, 62.4-200 GeV suppressed 
Theory: 
• GLV model calculations are showing similar trend, but not fitting the data well. 

(two calculation with gluon mean free path +30%) 

arXiv:1204.1526v1 

http://arxiv.org/abs/1204.1526v1


RAA in averaged over pT 
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RAA in different √sNN: 
 
•62.4-200 GeV are strongly 
suppressed 
 

•39.0 GeV data shows 
suppression for higher centrality 
only (Npart>100) 
 

•For pT > 6 GeV/c the 62.4 and 
200 GeV data points are 
comparable 

arXiv:1204.1526v1 

The suppression is most significant in most central 
collisions and it disappears earlier in lower √sNN 

http://arxiv.org/abs/1204.1526v1


Opacity – Summary 

 Reaching high enough collision energy we create an 

opaque medium for partons 

 

 RAA measured in Au+Au and d+Au collisions shows the 

suppression is final state effect 

 The opacity evolves as function of centrality, √sNN, pT 

 An opaque medium is created in 39 GeV collision, but 

the opaqueness disappears in lower centralities 
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Little Big Bang 
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Nuclear Geometry 
and Hydrodynamic flow 
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Motivation –  
Low Energy Scan 
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Evolution between SPS and RHIC energies - same trend ? 

The hydrodynamical 
flow of particles were 
measured in large range 
of collision energy. 
• From few GeV up 

to few TeV 

Hydrodynamical flow in √sNN: 
•Results follows the global trend for averaged v2 

•Flow seems to saturate √sNN > 100-200 GeV - indicates ideal "hydro". 



vn as a function of pT in Energy Scan 
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 Various beam energy: 39, 62, 200 GeV 

 No significant beam energy dependence within uncertainties 

 vn follows expected behavior down to 39 GeV  



vn as a function of centrality 
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 Various beam energy: 39, 62, 200 GeV 

 Increasing flow towards more peripheral collisions 

 Averaged vn follows also expected behavior 



Fluidity – Summary 

 The plasma created in heavy ion collisions has 

hydrodynamical behavior 

 The flow is depending on initial geometry of the 

collision 

 vn shows the same behavior in collisions of Au+Au at 

√sNN = 39 – 200 GeV 

 Flow follow the expected behavior in √sNN 
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Norbert Novitzky for PHENIX 18 

fraction of fm/c: 
 
Hard scattering 
 
Jet quenching 

order of one fm/c 
 

Thermalization 
 

High temperatures 

several fm/c 
 
Expansion 
 
Collective motion 

quark 

quark 

quark quark 

Time: 

Process: 
 
QGP 
probe 

Opacity Luminosity Fluidity 



Schematic View of Thermal Photons 
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 Longitudinally and radially expanding fire ball in “local equilibrium”  

 Real and virtual photons 

 Integrated over space-time 

 Local equilibrium:  

 Real and virtual photon momentum spectrum 

 Temperature information 

 sensitive to early times due to e-w/T 

 Collective expansion, w = pmu
m 

 Radial expansion results in blue and red shift  

 Longitudinal expansion results in red shift 

Eg 

Hadron Gas Thermal Tf 

QGP Thermal Ti 

“Pre-Equilibrium”? 

Jet Re-interaction 

Hard Prompt 

µe-w T



Photons 
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g, g*   from A+A 

Direct 

Hadron Decays 
“Prompt”  
hard scattering  

Pre-equilibrium  

Quark-Gluon Plasma 

Hadron Gas 

Thermal Non-thermal 

Need to subtract decay 
photons 

Sensitive to space-time evolution 

g 

p 

r 

p 

q 

q g 

g 

Production of photons: 

Hadron gas 

QGP 
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Prompt Photon in Au+Au 
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PHENIX arXiv:1205.5533 
PHENIX photon data 

High pT (4 to 25 GeV) from calorimeter 

Nuclear Modification Factor 
Consistent with binary scaling of p+p  

No evidence for cold nuclear matter or hot 
medium effects out to 20 GeV/c  

Hard scattering × Ncoll 

describes prompt g  from Au+Au 
 for pT above 5 GeV/c 

PHENIX arXiv:1205.5533 



Thermal Photon in Au+Au 
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pQCD 

g* (m0) 

g 

T ~ 220 MeV 

 Direct photons from real photons: 

 Measure inclusive photons and 

subtract decay photons 

 Direct photons from virtual photons: 

 Measure e+e- pairs at mp < m << pT 

Need to consider radial flow! Compare to 
models! 

g* (m→0) = g ; m << pT  
PHENIX  Phys. Rev. C 81 (2010) 034911 

First thermal photon measurement:  
Tini > 220 MeV > TC  

Inclusive photon spectra: 
Exponential – thermal 
Powerlaw – prompt 

te
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time 

Hydro 
calculation: 



Thermal photon v2 
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Independent analysis based on 

photon conversions g→e+e 

 Background free inclusive photon 

sample 

 

 Rg from same data 

 

 Completely independent 

systematic uncertainties 

 

 pT reach extended down to 0.5 

GeV/c 

 Two independent and consistent 

results! 

reaction plan: 1< |h|<2.8  

Au+Au 200 GeV 
min. bias 

Large elliptic flow of thermal photons 
Maximum v2~ 0.2  at  2 GeV/c 

photon conversions g→e+e 

PHENIX preliminary 
 

arXiv:1105:4126 



Thermal photon Puzzle 
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Large flow requires late emission!  

Apparent contradiction with yield, which 

points towards early emission! 

Hees/Gale/Rapp  

Phys.Rev.C84:054906,2011. 

R. Chatterjee and D. K. Srivastava 

PRC 79, 021901(R) (2009) 

PRL96, 202302 (2006) 

Models fail to describe simultaneously 

photon yield, T and v2! 
Tini ~ 325MeV 



Photons – Summary 

 Photon spectrum was measured at √sNN = 200 GeV 

 Thermal photons were measured by PHENIX 

 Thermal photon puzzle: 

 Two independent measurements were done to determine 

the v2 of photons 

 Theory cannot explain yet the high yield and high flow of 

thermal photons 
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THANK YOU 
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Backup 
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Elliptic flow of Photons 
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 How to determine elliptic flow of thermal photons? 

 Establish Rg, i.e. fraction of thermal photons in inclusive photon yield 

 Measure inclusive photon v2
incl 

 Predict hadron decay photon v2
hadr from pion v2

p0 

 Subtract hadron decay contribution  1
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Large v2 of low pT thermal photon  

PHENIX arXiv:1105.4126 



Thermal Photons 
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simulated based 

On hadron data 

measured  

raw yields conditional  

tagging efficiency  

Thermal photons observed in virtual and real photons 
consistent within systematic uncertainties 

 PHENIX has developed new method to detect direct photons:   

 Use photon conversions to e+e 

 Tag contribution from p0 decays 

 Independent systematic uncertainties 



Prompt Photon in p+p and d+Au 
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 PHENIX photon data 

 High pT (4 to 25 GeV) from calorimeter 

 Low pT (<4 GeV) from virtual photons  

 p+p data consistent with pQCD 

 xT scaling of cross section   

 NLO calculation agree well with data 

 d+Au data consistent with Ncoll scaling 

 No evidence for cold nuclear matter effects 

PHENIX arXiv:1205.5533 

Well established reference  
for prompt photons 
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