

Higgs Boson search at CMS

Somnath Choudhury (for the CMS collaboration)

Outline

LHC & the CMS detector Physics Objects SM Higgs Boson Search Beyond SM Higgs Search Summary & Outlook

The LHC

LHC 7 TeV pp run for 2011 reached successful conclusion on 30 October 2011

Delivering over 5 fb⁻¹ integrated lumi Max instantaneous lumi $3.54 \ge 10^{-33}$ cm⁻²s⁻¹

Machine performance better than expected

- 3.8 T superconducting solenoid envelop:
- Inner Tracker (silicon pixel and strip detectors) $|\eta| \le 2.5$
- ECAL (PbWO₄ crystals) Barrel $|\eta| \le 1.48$ Endcap $1.48 \le |\eta| \le 3.0$
- HCAL (brass/scintillator samplers)
- Muon Chambers gas ionization detectors embedded in steel return yoke outside the solenoid, |η| < 2.4 Drift Tubes, Cathode Strips and Resistive Plate Chambers

Basic physics objects :

Muon: Matching tracks in inner tracker and muon chambers

Electron: EM cluster with an associated track

Photon: EM cluster without a matching track

Jet: Cluster in EM and hadronic calorimeters (and inner tracker)

Tau lepton : Narrow jet with matching track(s)

MET: p_T required to balance all of these

Part 1: SM Higgs Boson

SM Higgs: Production and Decay

Somnath Choudhury (CEA Saclay)

• 11 independent channels cover the mass range between 110 - 600 GeV

• gluon fusion, vector boson fusion and associated production mechanisms exploited

	channel	mass range (GeV)
Low	Н → үү	110 - 150
Mass	Н → тт → етһ/µтһ/еµ + Х	110 - 145
	Н → тт → µµ + Х	110 - 140
	WH → еµть/µµть + v	110 - 140
High	(W/Z)H → bb	110 - 135
	H → WW → {v{v	110 - 600
	WH → W(WW*) → 3ł3v	110 - 200
	H → ZZ→ 4ℓ	110 - 600
	H → ZZ→ 2ℓ2q	(130 - 164) + (200 - 600)
	H → ZZ→ 2ℓ2⊤	190 - 600
mass	H → ZZ→ 2ℓ2v	250 - 600

Event sample classified into: Inclusive and VBF: γγ with 2 forward jets Cut-based analysis and Multivariate (MVA) analysis (recent!) MVA Inclusive Category => sub-divided on BDT output values

Signature: Narrow $\gamma\gamma$ mass peak very good mass resolution 1 - 2% Two isolated high E_T photons over large smoothly decreasing background Small Branching Ratio: ~ 2 x 10⁻³ Irreducible: 2 photon QCD production Reducible: γ + jet with one fake γ DY with electrons faking photons

Multivariate analysis techniques improve $H \rightarrow \gamma \gamma$ search sensitivity provides more optimal event classification

subdivided according to output value of a di-photon BDT

→ signal-like kinematic characteristics with a high score

=▶ good γγ mass resolution events with a high score

 $\implies high score from \gamma identification BDT with a high score$

= \blacktriangleright it should be $\gamma\gamma$ mass independent

• Di-photon MVA trained to distinguish $H \rightarrow \gamma \gamma$ events from background and to identify good resolution signal events

• Uses BDT method on MC background and Higgs boson signal events

• Training variables include photon ID, kinematics, right vertex probability and estimate mass resolution

• good resolution as desired feature weighting signal events by 1/estimate mass resolution

• MVA output used to make 5 categories with different S/B Inclusive & Separate di-jet tagged category to select VBF Higgs production

• MVA combines event level information into a classification variable categorizing in S/B and mass resolution

saclav

- Background mass spectrum modeled by polynomial fit
- Polynomial order between 3 and 5 depend on event category statistics

🔶 Data

±1σ

±2σ

160

140

CMS preliminary

BDT >= 0.05 VBF Tag

√s = 7 TeV L = 4.76 fb⁻¹

Events / (1 GeV/c²

18 F

16

14

12

10 8

6

2

Somnath Choudhury (CEA Saclay)

saclay

Expected 95% CL exclusion limit: 1.2 - 2 x SM cross section

High resolution channel sensitive to fluctuations of the background, accounted for by the "look elsewhere effect" (LEE)

Probability for same excess everywhere in the considered mass range

p – value : probability that a background only fluctuation is at least as large as the observation

► Largest excess observed at 125 GeV with 2.9 σ local significance

Excess at 125 GeV for both Inclusive and VBF

= Global significance 1.6 **σ** [110 - 150] GeV

- 3 different channels with 3 states $e\tau,\,\mu\tau$ and $e\mu$
- gluon-gluon fusion with at most 1 jet
- VBF: two additional forward jets 2 jets with large rapidity gap - better sensitivity due to the greatly reduced background from $Z \rightarrow \tau \tau$
- Boosted Higgs: one jet with $p_T > 150 \text{ GeV}$ reduces background $Z \rightarrow \tau \tau$ and improves resolution of tau-pair invariant mass
- ττ mass reconstructed using kinematic fit of visible products and MET with likelihood constraints on decay kinematics
- + $Z\to\tau\tau$ background from $Z\to\mu\mu$ in data with μ replaced by simulated τ
- W + jets and multi-jet background from large transverse mass and same-sign control regions, respectively

Mass resolution ~ 20%

- high branching ratios but huge QCD backgrounds
- select W /Z + H, V \rightarrow (ℓv) ($\ell \ell$) (vv) events with significant W/Z boost
- Require two central b-tagged jets (p_T threshold dependent on final state)

- Cut and Count analysis on BDT output (dijet and W/Z kinematics)
- Background yields scaled to data in control regions from inverted b-tagging (W/Z + light flavour), tighter b-tagging plus extra jets (tt), low $p_T^{W/Z}$ (W/Z + bb)

exclusion at 95% CL for 3-9 $\sigma_{\rm SM}$

Somnath Choudhury (CEA Saclay)

Excellent mass resolution and small background, S/B>1

Select 2 lepton pairs with opposite charge and same flavour, 50< m_{Z1} <120 GeV, 12< m_{Z2} <120 GeV

Electron acceptance : $|\eta| < 2.5, p_T > 7 \text{ GeV}$ Muon acceptance : $|\eta| < 2.1, p_T > 5 \text{ GeV}$

Irreducible $ZZ \rightarrow 4l$ continuum background estimated from MC normalized to Z + jets on data Irreducible Z + bb and tt backgrounds estimated from Z + same-sign dilepton sample, with fakes rate from Z + loose lepton sample

 $H \rightarrow ZZ \rightarrow 4I$

 $H \rightarrow ZZ \rightarrow 4I$

Expected background 67±6 events, observed 72 events over the full mass range, 9.5±1.3 expected and 13 observed in [100 - 160] GeV

saclay

 $H \rightarrow ZZ \rightarrow 4I$

Largest excess observed 119.5 GeV : Global significance 1.6 σ (2.5 σ local) 320 GeV : Global significance 1.0 σ (2.0 σ local) Exclusion limit at 95% CL for M_H [134 - 158], [180 - 305] and [340 - 465] GeV

 $H \rightarrow ZZ \rightarrow 4I$

• Two opposite charge isolated leptons with 20/10 (15) GeV p_T threshold for opposite-flavour (same flavour) events + MET (not compatible with a Z decay)

• Exclusive jet multiplicities (0, 1, VBF bins) and flavour (ee, $\mu\mu$, $e\mu$)

• Main backgrounds: WW (irreducible), tt, Z+jets, W+jets, WZ, ZZ

• BDT-based shape analysis in 0,1 jet bins, cut and count in VBF

• BDT Input variables: p_T of leptons, $M_{\ell\ell}$, $\Delta \phi_{\ell\ell}$, $\Delta R_{\ell\ell}$, M_T (for di-lepton system and each lepton)

di-lepton invariant mass in the 0-jet bin at Higgs selection level

 $\Delta \varphi_{II}$ in the 0-jet / 1-jet / 2-jet bin at the <u>Higgs selection level</u> – dominance of different background contributions

No significant excess in the full mass range

Cut based

MVA based

- Multivariate analysis more sensitive —> our baseline result Slight excess seen at low mass
- + 95% CL expected exclusion for $M_{\rm H}~127-270~GeV$
- 95% CL observed exclusion for M_H 129 270 GeV

H->ZZ->llvv candidate

Two analysis : Cut & count and mass shape

Discriminating variable for shape analysis : transverse mass Background estimate :

- Z + jets estimated using γ -jet to model MET distribution
- \bullet Non-resonant background normalization from $e\mu$ events
- ZZ and WZ from MC

Exclusion limits : Expected 95% CL for M_H in [290-480] GeV observed 95% CL for M_H in [270-440] GeV

Combination Results

Combination of all channels

 $\begin{array}{c} \mbox{Minimum p-value observed at 125 GeV} \\ \mbox{Global significance 2.1 σ [110-145] GeV (0.8 σ [110-600] GeV)} \\ \mbox{95\% CL allowed mass range : [114.5 - 127.5] GeV} \end{array}$

Somnath Choudhury (CEA Saclay)

Limits shown for two groups of channels

Higgs search and the electroweak fits

Part 2: BSM Higgs Boson

Minimal Super-Symmetric Model (MSSM)

Two isospin Higgs doublets

$$H_1=inom{H_1^0}{H_1^-}$$
 and $H_2=inom{H_2^+}{H_2^0}$

2 Higgs doublets each with 4 degrees of freedom

EW symmetry breaking: 5 physical Higgs bosons

- h, H (scalar, CP-even)
- A (pseudo-scalar, CP-odd)
- H^{\pm} (charged)

Decays to b-quark (~ 90%) and τ (~ 10%) pairs enhanced at all masses

2 parameters (M_A , tan β – ratio of the two doublets) study done in maximal mixing scenario

Neutral MSSM : Φ (h/H/A) $\rightarrow \tau \tau$

Tau pairs reconstructed in decays leptons (e/μ) + hadrons (1 or 3 prong) or $e\mu$

Two categories : non-b-tagged and b-tagged (to enhance $bb\Phi$ coupling)

Somnath Choudhury (CEA Saclay)

This excludes previously unexplored region: reaching as low as $\tan \beta = 7.1$ at $m_A = 160 \text{ GeV}$

Charged MSSM

Top Branching Fractions in SM

Event with (τ + MET) from H^±, 2 b-jets , 2 jets or (e/ μ + MET) from W

Significant constraint on BR (t \rightarrow H⁺b) < 2 - 3% Excludes a large region in m(H⁺) – tan β plane

Fermiophobic Higgs

ggH forbidden, VBF or VH associated production only: exploit presence of 2 tag jets in forward region or associate W and Z (lepton-tag)

 $H \rightarrow \gamma\gamma$ enhanced by an order of magnitude wrt SM $\gamma\gamma$ only expected exclusion $M_H < 135 \text{ GeV}$ Small excess observed at 126 GeV 2.7 σ local significance, 1.2 σ global significance (LEE)

Combination VBF and VH with H \rightarrow WW, ZZ dilutes excess to ${<}1\sigma$

- <u>SM Higgs</u> boson search in 11 independent channels combined in CMS
 - Expected 95% exclusion for M_H 114.5-543 GeV
 - Observed 95% exclusion for M_H 127.5-600 GeV
- SM Higgs boson, if it exists, is limited at 95% CL to 114.5-127.5 GeV
- Excess observed around 125 GeV with local significance 2.8 σ and global significance 0.8 σ (full search range) and 2.1 σ (110-145 GeV)
- The excess is both consistent with a background fluctuation, or with the 'birth' of a signal for a Higgs Boson around 125 GeV

- Broad program of <u>BSM Higgs</u> searches with the CMS detector
- MSSM Higgs parameters constrained with $H \rightarrow \tau \tau$
- Small excess for the $\gamma\gamma$ channel in the fermiophobic model
- No evidence for new BSM Physics in the Higgs sector so far

Outlook

- No conclusive statement drawn on <u>SM Higgs</u> from 2011 data.
- 2012 data would have major impact! Analysis of 2012 data underway
- CMS has recorded over 4 fb⁻¹ of integrated luminosity at 8 TeV so far
- 2012 data will either discover the Higgs or exclude it completely in 114.5 127.5 GeV
- New techniques to further improve the analysis and results ongoing
- Expecting something sensational! Exciting time ahead of us!

- 2012 data @ 8 TeV with 15 fb⁻¹ expected to shed light on <u>BSM Higgs</u>
- Further scan of MSSM Higgs parameter space
- Fermiophobic, Doubly Charged Higgs, NMSSM scenarios
- Possibility of non-SUSY scenario investigation

Back-up Slides

saclay

Photon identification efficiencies: using a tag and probe applied to $Z \rightarrow ee$ events (for all requirements except the electron veto).

Both statistical and systematic errors for the data measurement combined quadratically to calculate error on ratio eff(data)/eff(MC).

Category	$\epsilon_{ m data}$ (%)	ϵ_{MC} (%)	$\epsilon_{ m data}/\epsilon_{ m MC}$
Barrel, $R_9 > 0.94$	$89.26 \pm 0.06 \pm 0.04$	90.61 ± 0.05	$0.985 {\pm} 0.001$
Barrel, $R_9 < 0.94$	$68.31{\pm}0.06{\pm}0.55$	$68.16 {\pm} 0.05$	$1.002 {\pm} 0.008$
Endcap, $R_9 > 0.94$	$73.65 {\pm} 0.14 {\pm} 0.39$	$73.45 {\pm} 0.12$	1.002 ± 0.006
Endcap, $R_9 < 0.94$	$51.25 \pm 0.11 \pm 1.25$	$48.70 {\pm} 0.08$	$1.052 {\pm} 0.026$

Number of selected events in different event classes, for a SM Higgs boson signal (m_H = 120 GeV) and mass resolution, and for data at 120 GeV

	Both photons in barrel		One or both in endcap		Dijet
	$R_9^{\min} > 0.94$	$R_9^{\min} < 0.94$	$R_9^{\min} > 0.94$	$R_9^{\min} < 0.94$	tag
SM signal expected	25.2 (33.5%)	26.6 (35.3%)	9.5 (12.6%)	11.4 (14.9%)	2.8 (3.7%)
Data (events/GeV)	97.5 (22.8%)	143.4 (33.6%)	76.7 (17.9%)	107.4 (25.1%)	2.3 (0.5%)
$\sigma_{\rm eff}$ (GeV)	1.39	1.84	2.76	3.19	1.71
FWHM/2.35 (GeV)	1.19	1.53	2.81	3.18	1.37

effect of systematic uncertainty assigned to the γ ID BDT output on $\gamma\gamma$ BDT output, for background MC (100 < mgg < 180 GeV), and for data

effect of systematic uncertainty assigned to the γ energy resolution BDT output on $\gamma\gamma$ BDT output, for background MC (100 < mgg < 180 GeV), and for data

Somnath Choudhury (CEA Saclay)

Di-jet p_T in the W + bb control region for $W(\mu v)H(bb)$

Di-jet invariant mass in the W + bb control region for W(ev)H(bb)

Somnath Choudhury (CEA Saclay)

Baseline	4 <i>e</i>	4μ	2e2µ	
ZZ	12.27 ± 1.16	19.11 ± 1.75	30.25 ± 2.78	
Z+X	1.67 ± 0.55	1.13 ± 0.55	2.71 ± 0.96	
All background	13.94 ± 1.28	20.24 ± 1.83	32.96 ± 2.94	
$m_{\rm H} = 120 {\rm GeV}/c^2$	0.25	0.62	0.68	
$m_{\rm H} = 140 {\rm GeV}/c^2$	1.32	2.48	3.37	
$m_{\rm H} = 350 {\rm GeV}/c^2$	1.95	2.61	4.64	
Observed	12	23	37	

Somnath Choudhury (CEA Saclay)

 $H \to ZZ \to 4l$

 $H \to WW \to 2l2\nu$

M_H=130 GeV

Most sensitive channel is eµ in 0-jet bin higher s/b and smaller systematic errors

Somnath Choudhury (CEA Saclay)

MSSM Higgs: Neutral

$$\begin{aligned} f(gg \to \phi) &= \left(\frac{g_t^{MSSM}}{g_t^{SM}}\right)^2 \sigma_{tt}(gg \to \phi) + \left(\frac{g_b^{MSSM}}{g_b^{SM}}\right)^2 \sigma_{bb}(gg \to \phi) \\ &+ \frac{g_t^{MSSM}}{g_t^{SM}} \frac{g_b^{MSSM}}{g_b^{SM}} \sigma_{tb}(gg \to \phi) \end{aligned}$$

$$\Delta \sigma_{tt}^{NNLO}(gg \to \phi) = \Delta K_{NNLO} \ \sigma_{tt}^{LO}(gg \to \phi)$$
$$\Delta K_{NNLO} = \frac{\sigma_{NNLO}^{0} - \sigma_{NLO}^{0}}{\sigma_{LO}^{0}}$$

MSSM Higgs: Neutral

saclay

MSSM Higgs: Neutral

MSSM Higgs: Charged

The event yield after each selection step for the τ_h +jets analysis

Upper limit on $B(t \rightarrow H^+b)$ as a function of m_{H^+} for the fully hadronic

NMSSM Higgs: $a_1 \rightarrow \mu^+ \mu^-$

Next-to-Minimal Supersymmetric Standard Model (NMSSM):

Adds singlet scalar field, thereby expanding the Higgs sector to three CP-even $(h_1, h_2$ and $h_3)$, two CP-odd (a_1, a_2) and two charged scalars

light (~10 GeV) boson produced: Search for a_1 in its decays to opposite sign di-muon pairs

Doubly-Charged Higgs

Somnath Choudhury (CEA Saclay)

find the values of the nuisance parameter that best fit the experimental data for the background-only and signal+background hypothesis

use these values to generate toy MC pseudo-data for background-only and signal+background to construct test statistic p.d.f. for a signal with strength μ and background only hypothesis:

$$f(\tilde{q}_{\mu}|\mu, \hat{\theta}_{\mu}^{\text{obs}}) = f(\tilde{q}_{\mu}|0, \hat{\theta}_{0}^{\text{obs}})$$

from the p.d.f.s the p-values for background-only and signal+background hypothesis are found and the CL_S as the ratio of the two p-values

$$CL_{s}(\mu) = \frac{P\left(q_{\mu} \ge q_{\mu}^{obs} \mid \mu s(\hat{\theta}_{\mu}^{obs}) + b(\hat{\theta}_{\mu}^{obs})\right)}{P\left(q_{\mu} \ge q_{\mu}^{obs} \mid b(\hat{\theta}_{0}^{obs})\right)}$$

To set exclusion limits on a Higgs boson hypothesis:

$$q_{\mu} = -2\ln \frac{\mathcal{L}(\text{data} \mid \mu \cdot s(\hat{\theta}_{\mu}) + b(\hat{\theta}_{\mu}))}{\mathcal{L}(\text{data} \mid \hat{\mu} \cdot s(\hat{\theta}) + b(\hat{\theta}))} \quad 0 \le \hat{\mu} < \mu$$

To quantify the statistical significance of an excess over the background-only expectation:

$$q_0 = -2\ln \frac{\mathcal{L}(\text{data} \mid b(\hat{\theta}_0))}{\mathcal{L}(\text{data} \mid \hat{\mu} \cdot s(\hat{\theta}) + b(\hat{\theta}))} \quad \hat{\mu} \ge 0$$

