

Experimental Particle Physics

W,Z and Diboson physics at ATLAS

Nick Edwards, University of Glasgow On Behalf of the ATLAS Collaboration ICFP 2012

Introduction to W/Z physics

- W and Z bosons produced at high rate at the LHC, and are well known theoretically.
- Precision studies of W and Z bosons test Standard Model and pQCD in a new energy regime.
- Large statistics samples allow us to study rarer processes e.g. diboson production – stepping stones to discovery.

W/Z Measurements

- ➤ W/Z differential cross sections
- ➢ Lepton Universality
- $\succ \tau$ polarisation in W-> τv
- Strange quark density

Diboson Measurements

- Wgamma/Zgamma + aTGC Limits
- ➤ WW->IuIu + aTGC Limits
- ➤ WZ -> IIIU + aTGC Limits
- **>** ZZ->∥טט
- ➤ ZZ -> IIII + aTGC Limits

W/Z Differential Cross Sections

- W/Z cross-section measured differentially as a function of $|y_Z|$ for Z and $|\eta_l|$ for W using 33 36 pb⁻¹ of data collected in 2010.
- Combination of electron and muon channels.
- Good agreements with NNLO predictions, though some discrepancies for some PDF sets.

http://prd.aps.org/abstract/PRD/v85/i7/e072004

Nick Edwards - W,Z and Diboson Physics at ATLAS - ICFP 2012

$$R_W = \frac{Br(W \to ev)}{Br(W \to \mu v)} = 1.006 \pm 0.024$$

World average: 1.017 ± 0.019

$$R_{Z} = \frac{Br(Z \to ee)}{Br(Z \to \mu\mu)} = 1.018 \pm 0.031$$

World average: 0.9991 ± 0.0024

Lepton Universality

- Comparison of ratios of cross sections in electron and muon channels provides test of lepton universality.
- Production cross section independent of decay lepton flavour, so ratios of cross-sections give measurement of ratios of branching fractions.
- Results compatible with world average and with Standard Model prediction.

$$ATLAS$$

$$ATLA$$

ATLAS

Strange Quark Density

e Physics

- New! Flavour SU(3) symmetry suggests three light sea quark distributions equal, but strange quarks may be supressed due to their high mass.
- Ratio of the $W\pm$ and Z cross-sections is sensitive to the strange quark fraction sensitive it contributes to σZ and σW through non-identical sub-processes $\overline{ss} \rightarrow 7$ and $sc \rightarrow W$.
- Measure $r_s = 0.5(s + \bar{s})/\bar{d}$ by a NNLO fit ATLAS data together with constraints from deep inelastic scattering from HERA using HERAFitter framework.
- Measured value at $Q_2 = 1.9 \text{ GeV}$, x=0.023 is:

$$r_s = 1.00 \pm 0.20_{\text{exp}} \pm 0.07_{\text{mod}}^{+0.10}_{-0.15} \text{ par}^{+0.06}_{-0.07} \alpha_s \pm 0.08_{\text{th}}$$

Consistent with prediction that the light quark see at low x is flavour symmetric.

T polarisation in W->TV decays

- W⁻ expected to couple exclusively to left handed au-.
- Polarisation defined as: $P_{\tau} = \frac{\sigma_R \sigma_L}{\sigma_R + \sigma_L}$ SM predicts $P_{\tau-} = -1$.
- Experimental observable in one prong tau decays sensitive to tau polarization:

$$\Upsilon = \left(E_{\rm T}^{\pi^{-}} - E_{\rm T}^{\pi^{0}} \right) / \left| \vec{P}_{\rm T}^{\pi^{-}} + \vec{P}_{\rm T}^{\pi^{0}} \right|_{\breve{\Xi}}$$

• Fit observed distribution to templates for left-handed and right-handed taus.

 $P_{\tau} = -1.06 \pm 0.04 (stat)_{-0.07}^{+0.05} (syst)$

 First **τ** polarisation measurement at a hadron collider.

ATLAS 100 ∖s = 7 TeV 80 $L dt = 24 \text{ pb}^{-1}$ Data 2010 60 Fit Left-handed 40 **Right-handed** 20 -0.5 0.5 0 2 2.5

Υ

Diboson Physics

- Diboson production is an important test of the SM electroweak sector – relatively clean, rare signals.
- Sensitive to new phenomena such as resonant production of new massive particles.
- WW and ZZ production are irreducible backgrounds to the corresponding Higgs decay channels – crucial to understand.

Anomalous Triple Gauge Couplings

- Many new physics models lead to additional triple gauge couplings.
- aTGCs manifest as increased cross sections, especially at high p_T and high centre of mass energy.

$W/Z+\gamma$

University of Glasgow Experimental Particle Physics

- Measure cross-sections as a function of photon E_T using 1fb⁻¹ of 2011 data
- Select events with isolated leptons with $p_T > 25$ GeV and isolated photon with $E_T > 15$ GeV, $\Delta R(I, \gamma) > 0.7$
- W+y: I lepton, $E_T^{miss}>25$ GeV, $M_T>$ 40 GeV , Z+y: 2 isolated leptons, $p_T>25$ GeV, $M_{\parallel}>$ 40GeV
- Main background is W/Z+jets.

Nick Edwards - W,Z and Diboson Physics at ATLAS - ICFP 2012

WW->lulu

- Measure cross section in 4.7fb⁻¹ of 2011 data.
- Exactly 2 isolated leptons, $p_T > 25$ (leading) GeV, $p_T > 20$ (trailing) GeV
- Z/ γ * / jet rejection:
 - M_{II}>15GeV, |M_{II}-M₇^{PDG}| >15 GeV (ee/ $\mu \mu$)
 - $M_{\parallel} > 10 \text{ GeV} (e \mu)$
- $E_{Trel}^{miss} > 55/50/25 \text{ GeV}(\mu \mu/ee/e\mu)$
- Veto events with a jet with $p_T > 25$ or a b-tagged jet with $p_T > 20$ GeV.
- Observe 1524 events with estimated background of $531.1 \pm 13.7 \pm 48.7$.
- Measured cross section:
 - 53.4 \pm 2.1 (stat) \pm 4.5 (syst) \pm 2.1 (lumi) pb
- SM NLO prediction: 45.1 ± 2.8 pb.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-025/

nTGC limits from WW->lulu

- Limits set using 1fb-1 of 2011 data.
- Assume anomalous couplings arise from dimension-6 operators and EWSB occurs via a light SM Higgs ("LEP assumption", coupling parameterised by:

– g
$$_{Z}^{I}$$
, κ_{Z} and λ_{Z} .

 Use leading lepton pT distribution to set limits with a binned likelihood fit.

Λ	Δg_1^Z	Δk_Z	λ_Z
3 TeV	[-0.064, 0.096]	[-0.100, 0.067]	[-0.090, 0.086]
∞	[-0.052, 0.082]	[-0.071, 0.071]	[-0.079, 0.077]

http://www.sciencedirect.com/science/article/pii/S0370269312005072

Nick Edwards - W,Z and Diboson Physics at ATLAS - ICFP 2012

0.2

0.4

 Δg_{\perp}^{Z}

-0.6

-0.4

-0.2

0.6

WZ->I *v* II

- 3 isolated leptons,
- Z: 1st and 2nd leptons, $p_T > 15 \text{GeV} |$ $M_{\parallel} - M_z^{PDG} | < 10 \text{GeV}$
- W: 3rd lepton, p_T >20GeV, m_T>20GeV, E_t^{miss} > 25GeV
- Major backgrounds: Z+jets/ γ , ZZ, Top
- Observe 71 events, expected background of 12.1±1.4 (syst) ^{+4.1}_{-2.0} (stat).
- Measured cross-section: $\sigma_{WZ \to \ell \nu \ell \ell}^{\text{fid}} = 102^{+15}_{-14} (\text{stat.})^{+7}_{-6} (\text{syst.})^{+4}_{-4} (\text{lumi.}) \text{ fb}$

$$\sigma_{WZ}^{\text{tot}} = 20.5^{+3.1}_{-2.8} (\text{stat.})^{+1.4}_{-1.3} (\text{syst.})^{+0.9}_{-0.8} (\text{lumi.}) \text{ pb.}$$

• SM prediction:17.3^{+1.3}_{-0.8} pb

http://www.sciencedirect.com/science/article/pii/S0370269312001943

University of Glasgow

Experimental Particle Physics

ATLAS

 λ_{z}

 $\Delta \kappa_{7}$

nTGC limits from WZ->IIIU

 Set limits of deviations from SM values using 1.02fb⁻¹ cross section measurement.

ATLAS, $\int Ldt = 1.0 \text{ fb}^{-1}$

_ ATLAS, ∫Ldt = 1.0 fb⁻¹

 $\sqrt{s} = 7 \text{TeV}, \Lambda = 2 \text{TeV}$

 $\sqrt{s} = 1.96 \text{TeV}, \Lambda = 2 \text{TeV}$

____ D0, ∫Ldt = 4.1 fb⁻¹

 $\sqrt{s} = 7 \text{TeV}, \Lambda = \infty$

Limits set are compatible with SM.

Coupling	Observed	Observed	Expected
	$(\Lambda=2~{\rm TeV})$	$(\Lambda = \infty)$	$(\Lambda = \infty)$
Δg_1^Z	[-0.20, 0.30]	[-0.16, 0.24]	[-0.12, 0.20]
$\Delta \kappa_Z$	[-0.9, 1.1]	[-0.8, 1.0]	[-0.6, 0.8]
λ_Z	[-0.17, 0.17]	[-0.14, 0.14]	[-0.11, 0.11]

<u>ZZ->ll</u>טט

- Measure in 4.7fb-1 of 2012 data. Final states involving two isolated electrons and muons plus missing transverse energy.
- Lepton $p_T > 20$ GeV, $|M_{\parallel}-M_{PDG}| < 15$ GeV
- No reconstructed jets with pT>25 GeV.
- Axial- $E_{T}^{miss} > 80 \text{GeV}$ (E_{T}^{miss} projection along Z pT)
- Fractional difference $|E_T^{miss} - p^Z_T|/p^Z_T < 0.6.$
- Observed 78 events with background estimated to be 40.7 ± 4.3 (syst) ± 3.7 (stat)
- Measured total cross-section:

 $\sigma_{77}^{\text{tot}} = 5.4^{+1.3}_{-1.2}(\text{stat.})^{+1.4}_{-1.0}(\text{syst.}) \pm 0.2(\text{lumi.}) \text{ pb}$

Consistent with SM prediction of $6.5^{+0.3}_{-0.2}$ pb.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-027/

Events / 5GeV

 10^{8}

 10^{6}

10⁵

10

Nick Edwards - W,Z and Diboson Physics at ATLAS - ICFP 2012

ZZ->||||

- 4.7fb-1 of 2012 data. Final states involving four isolated electrons and muons.
- Electron: pT > 7 GeV, |eta| < 2.47
- Muon: pT > 7 GeV, |eta|<2.7
- Both Z bosons 66 < m_Z < 116 GeV.
- Very low background:
 - Mainly Z+jets, ttbar, other diboson.
 - Data driven estimate 0.7+1.3-0.7 (syst) +1.3-0.7 (stat) events.
- Observed 62 events.
- Measured cross section:

 $\sigma_{ZZ}^{\text{tot}} = 7.2^{+1.1}_{-0.9} \text{ (stat)} {}^{+0.4}_{-0.3} \text{ (syst)} \pm 0.3 \text{ (lumi) pb}$

• Consistent with SM NLO prediction of $6.5^{+0.3}_{-0.2}$ pb.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-026/

ZZ->IIII nTGC limits

Λ

- Set using first 1.02 fb-1 of dataset.
- Limits set using total number of events only.
- Limits are comparable to, or tighter than previous limits from other experiments and compatible with SM expectation.

http://prl.aps.org/abstract/PRL/v108/i4/e041804

Summary and Outlook

- Wide range of W/Z and diboson physics measurements performed by ATLAS giving rigorous tests of the Standard Model.
- Most W/Z measurements are based on 2010 data. The 2011 dataset gives more than 100 times more statistics – expect even more precise results soon.
- Diboson measurements based on 2011 data, but still much work ongoing with this dataset.
- 2012 data at 8 TeV accumulating fast!

Spare Slides

Nick Edwards - W,Z and Diboson Physics at ATLAS - ICFP 2012

The ATLAS Experiment

- General purpose detector covering nearly entire solid angle around interaction point.
- Inner tracking detector in 2T axial magnet field provides charged particle tracking for $|\eta| < 2.5$.
- Electromagnetic and hadronic calorimeter system provide coverage for $|\eta| < 4.9$.
- Muon spectrometer provides coverage for $|\eta| < 2.7$ with separate trigger and high-precision tracking chambers.

