<u>The Strongly Interacting</u> <u>Quark Gluon Plasma:</u> <u>New Energy Frontier</u>

(personal view on a few topics)

ICFP, Kolymbari, Crete, June 10-16, 2012

Itzhak Tserruya

RHIC and LHC (I)

□ Common goal - hunting the properties of the sQGP:

- Equation of state critical end point
- > Temperature

. . .

Itzhak Tserruya

- Transport properties: viscosity, speed of sound ...
- Parton energy loss
- CSR the origin of the QCD mass
- Debye screening radius and deconfinement

RHIC and LHC (I)

- □ RHIC: Very successful dozen years of operation.
 - Very flexible machine: pp, dAu, CuCu, AuAu, CuAu, UU

 $\sqrt{s_{NN}} = 7 - 200 \text{ GeV}$

spin program with polarized p beams \sqrt{s} = 200, 500 GeV

- More than 330 papers in the refereed literature (of which 138 PRL papers).
- The question: how LHC results compare to what we have learned from RHIC ? What changes from RHIC to LHC ?
 > Obvious quantitative differences
 - What is qualitatively different at LHC ?

Flow

Itzhak Tserruya

V₂ – Energy dependence

Preliminary, STAR, PHENIX and E895 data

Same v_2 vs p_T from 39 GeV to 2.76 TeV

v₂ saturates at about or below 39 GeV

 \Box No change in v₂ for almost two orders of magnitude in $\sqrt{s_{NN}}$

Perfect fluid from 39 GeV to 2.76 TeV

Flow: higher harmonics

$$\frac{d^2 N}{d\phi dp_T} \propto 1 + 2\sum_{n=1}^{\infty} v_n(p_T) \cos[n(\phi - \psi_n)]$$

Triggered by theoretical papers –Alver, Gambeaud, Luzum and Ollitrault, Phys. Rev. C82 (2010) and G-L Ma and X-N Wang arXiv: 1011.5249v2

□ The five experiments demonstrated the importance of higher harmonics, and in particular the relevance of v_3 to constrain the η /s value.

Higher Harmonics: p_T dependence

<u>n/s and triangular flow</u>

Conjectured Lower bound

□ Using v_2 only, remarkable convergence $4\pi\eta/s = 1-2$

 \square Higher harmonics and v₃ in particular provide valuable additional constraints.

PHENIX: v₃ seems to prefer low η/s
 The question is whether the η/s value at RHIC and LHC will be similar or not reflecting or not the same medium.

High p_T phenomena Parton Energy Loss

Observables:

- □ Inclusive charged hadrons
- Identified hadrons
- Heavy Flavor
- Hadron correlations
- Di-Jets
- **Ω** *γ*, Z, W jet

Goal: achieve same level of understanding for partons traversing strongly interacting matter (QCD) as for charged particles in matter (QED)

Single Hadrons R_{AA} and R_{CP}

$$\mathbf{R}_{AA}(\mathbf{p}_{t}) = \frac{d^{2}N_{AA} / dp_{T} d\eta}{N_{coll} d^{2} N_{pp} / dp_{T} d\eta}$$

Itzhak Tserruya

ICFP, Kolymbari, Crete, June 12, 2012

Identified particles R_{AA} or R_{CP}

□ Is the same pattern observed at LHC?

□ Interesting hierarchy at low p_T in the suppression pattern observed at RHIC:

• baryons

ower RAA

- strange mesons, e_{HF}
- light quark (u,d) mesons

 All particles seem to exhibit the same suppression level at high p_T, larger than ~7 GeV/c

Itzhak Tserruya

Charged Particle R_{AA} up to $p_T = 100 \text{ GeV/c}$

Maximum suppression at p_T ≈ 6-7 GeV/c
 Almost no suppression at p_T > 50 GeV/c for all centralities
 R_{AA}@RHIC ≈ R_{AA}@LHC in the p_T range of overlap

Jets

ATLAS: two jet event

ATLAS: single jet event

Itzhak Tserruya

Jet suppression

Jet yield suppressed in central collisions by about a factor of 2 Suppression level independent of jet energy Similar level of suppression at RHIC

Angular correlation: dijets

Itzhak Tserruya

ICFP, Kolymbari, Crete, June 12, 2012

Jet-hadron correlations at RHIC

Dijet energy balance: LHC

Dijet energy balance characterized by the asymmetry parameter:

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Energy imbalance grows with centrality

Very similar results from CMS

Where does the energy go?

Full event is balanced

Imbalance in-cone: Excess of high pt tracks towards leading jet Imbalance out-of-cone: Low-pt tracks out of cone Excess of low pt tracks towards the recoiling jet

ICFP, Kolymbari, Crete, June 12, 2012

Fragmentation functions at LHC

Fragmentation functions unmodified

Consistent with jets fragmenting in vacuum

Itzhak Tserruya

ICFP, Kolymbari, Crete, June 12, 2012

Jets LHC vs RHIC

 ❑ Jets are suppressed R_{CP}→0.5 ❑ Mostly back to back – No deflection 	 □ Jets are suppressed R_{AA} →0.5 □ Mostly back to back – No 		
 Dijets imbal Comp (0.5 Qualitatively different be and high p_T (Effect of s 	havior of low pt (10-40 GeV/c) > 100 GeV/c) jets? or selection cuts?		
angles wrt the away side jet Fragmentation functions unmodified	pp collisions Fragmentation functions modified		
ATLAS jets: leading $E_T > 100 \text{ GeV}$ second $E_T > 25 \text{ GeV}$ $FF p_{T,track} > 2 \text{ GeV/c}$ CMS jets: leading $p_T > 120 \text{ GeV/c}$ subleading $p_T > 50 \text{ GeV/c}$	STAR: jet-hadron correlations Jets $p_T = 10 - 40$ GeV/c assoc. hadrons $p_T > 0.2$ GeV/c		
FF p _{T,track} > 4 GeV/c			

Charged particle

Δx

Ein

Calibrated Probes: γ, Z – Jet

 $E_{in} - \Delta E$

Electroweak Probes - Binary Scaling

part

Itzhak Tserruya

Fragmentation function at RHIC

 γ – jet correlations

 Au+Au fragmentation function modified compared with pp <u>– Smaller yield at low ξ (high p_T)</u>

- Slightly higher yield at high ξ (low p_T)

<u>y-Jet Momentum Balance</u>

 $p_T^{\gamma} > 60 \text{ GeV/c}$ $|\eta| < 1.44$

 p_T^{Jet} > 30 GeV/c $|\eta| < 1.6$

Submitted to PLB, arXiv:1205.0206

Momentum ratio shifts/decreases with centrality (jets below the 30 GeV/c p_T threshold not included)

Quarkonia and Bottomonia: Debye screening - deconfinement

The di-muon spectrum at LHC

J/Ψ or the endless saga

 After more than 25 years since the classic Matsui and Satz paper -PLB 178, 416 (1986) - there is not a detailed understanding of the J/Ψ production and its behavior in relativistic heavy ion collisions.

Two big surprises from the RHIC and SPS data

Sequential melting

 No binding when screening radius < binding radius (Debye screening)

State	J/ψ (1S)	χ_c (1P)	ψ' (2S)	Υ (1S)
m (GeV/c ²)	3.10	3.53	3.68	9.46
<i>r</i> ₀ (fm)	0.50	0.72	0.90	0.28
State	χ_b (1P)	Υ´ (2S)	χ'_{b} (2P)	Ƴ″ (3S)
m (GeV/c ²)	9.99	10.02	10.26	10.36
<i>r</i> ₀ (fm)	0.44	0.56	0.68	0.78

 Different radii of bound states lead to sequential melting of the states with increasing temperature Itzhak Tserruya
 ICFP, Kolymbari, Crete, June 12, 2012

J/Ψ elliptic flow at RHIC

(testing the recombination hypothesis)

 $J/\psi v_2$ at RHIC:

- Consistent with zero within error bars
- > Does not provide supporting evidence for ccbar recombination at RHIC

Higher precision data are needed

Itzhak Tserruya

< 0.35)

ICFP, Kolymbari, Crete, June 12, 2012

J/ψ at RHIC and LHC different ?

ALICE

Not a clear situation at LHC mid-rapidity. Significance limited by the precision of the pp reference data

ICFP, Kolymbari, Crete, June 12, 2012

PHENIX

<u>J/Ψ elliptic flow</u>

 $J/\psi v_2$ at RHIC: consistent with zero

 $J/\psi v_2$ at LHC: non-zero at intermediate pt (2-4 GeV/c) but significance = 2.2 σ

Model prediction for v2 shown here succeeds well at reproducing J/ψ RAA.

Higher precision data are needed

Itzhak Tserruya ICFP, Kolymbari, Crete, June 12, 2012

NY(2S)/NY(1S)|pp = $0.56 \pm 0.13 \pm 0.01$ NY(3S)/NY(1S)|pp = $0.21 \pm 0.11 \pm 0.02$ NY(2S)/NY(1S)|PbPb = 0.12 ± 0.03 ± 0.01 NY(3S)/NY(1S)|PbPb < 0.07

Y(1S) and $Y(2S) R_{AA}$

Y(1S) 52±9% direct

consistent with complete! suppression of feed down states (~50%)

 Υ (2S) Strong suppression up to 5 x stronger suppression than Υ (1S) Comparable suppression to J/ ψ

Y(3S) disappeared upper limit Y(3S) / Y(1S) < 1% (95% CL)

Consistent with expectations
 CNM ?

Need comparable RHIC data

Itzhak Tserruya

ICFP, Kolymbari, Crete, June 12, 2012

- LHC has opened a new energy frontier in the study of the sQGP.
- Most of the paradigms established at RHIC seem to hold at the LHC.
- Matter formed at the LHC is *qualitatively* similar to the one formed at RHIC: strongly interacting matter behaving as a perfect liquid with very low viscosity.
- Common goal of RHIC and LHC: precise data with multiple observables at various energies to characterize the sQGP and constrain the theoretical models.