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1. Motivation 1.1 Early thermalization puzzle

1. Motivation
1.1 Early thermalization puzzle at RHIC

experimental data from RHIC (and the LHC) are commonly interpreted as the
evidence for very fast local equilibration of matter, success of perfect fluid
hydrodynamics (τth ≤ 1 fm/c)

fast equilibration contradicts the results of microscopic models of heavy-ion
collisions, string models, color glass condensate, pQCD kinetic calculations, ...

thermalization of transverse degrees of freedom understood as the effect of
fluctuations of the string tension (A. Białas)

strongly or weakly interacting QGP?
sQGP (E. Shuryak,...) or wQGP (S. Mrówczyński,...)

successful description of data with models relaxing the assumption of fast
equilibration
perfect-fluid preceded by free streaming
W. Broniowski, WF, M. Chojnacki, A. Kisiel, Phys. Rev., C80 (2009) 034902,
S. V. Akkelin, Y. M. Sinyukov, Phys. Rev., C81 (2010) 064901
perfect-fluid preceded by transverse hydrodynamics
A. Bialas, M. Chojnacki, WF, Phys. Lett. B661 (2008) 325
R. Ryblewski, WF, Phys. Rev. C 82, 024903 (2010)
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1. Motivation 1.2 Forms of the energy-momentum tensor

1. Motivation
1.2 Forms of the energy-momentum tensor of matter produced in HIC
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relativistic heavy-ion collisions can be described by the energy
momentum-tensor with essentially diagonal form (in the local rest frame (LRF))
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1. Motivation 1.3 High initial anisotropy of pressure

1. Motivation
1.3 High initial anisotropy of pressure

at the early times, τ < 1 fm/c, when the transverse distribution of matter in nuclei
is known and may be used to model the initial energy/entropy density for the
hydrodynamic calculations, the system exhibits high pressure anisotropy,
typically P⊥ ≫ P‖

at the later times, τ > 1 fm/c, the pressure is almost isotropic but the transverse
distribution of matter is not known

need for an effective hydrodynamic approach which describes a transition from a
highly-anisotropic system to perfect-fluid regime, THIS TALK

more realistically, a transition from a highly-anisotropic system to viscous
hydrodynamics with small viscosity to entropy ratio, WORK IN PROGRESS

one cannot apply viscous hydrodynamics too early after the impact – the
corrections to the energy-momentum tensor are very large due to the initial rapid
longitudinal expansion
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1. Motivation 1.4 Concept of ADHYDRO

1. Motivation
1.4 ADHYDRO: highly-Anisotropic and strongly-Dissipative HYDROdynamics

WF, R.Ryblewski, Phys. Rev. C 83, 034907 (2011), arXiv:1007.0130
R.Ryblewski, WF, J. Phys. G 38, 015104 (2011); Acta Phys. Polon. B 42, 115 (2011)

P⊥ 6= P‖

T µν = (ε + P⊥) UµUν − P⊥ gµν − (P⊥ − P‖)V
µV ν

P⊥ = P‖ → isotropic fluid, T µν → T µν
perfect hydro

Uµ = γ(1, vx , vy , vz), γ = (1 − v2)−1/2 hydrodynamic flow

V µ = γz(vz , 0, 0, 1), γz = (1 − v2
z )−1/2 longitudinal axis

U2 = 1, V 2 = −1, U · V = 0

local rest frame: Uµ = (1, 0, 0, 0) and V µ = (0, 0, 0, 1)

T µν =

0
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2. Dynamic equations 2.1 Energy-momentum conservation and entropy production

2. Dynamic equations
2.1 Energy-momentum conservation and entropy production

in analogy to perfect-fluid hydrodynamics we assume:

∂µT µν = 0

∂µSµ = Σ

Sµ = σUµ – entropy flow
Σ – internal entropy source

one has to specify:

generalized EOS ǫ = ǫ(P⊥, P‖)
entropy production term Σ = Σ(P⊥, P‖)

system of 5 equations for 5 unknown functions: ~v , P⊥, P‖

in particular, for massless partons the condition T µ
µ = 0 gives

ε(P⊥, P‖) = 2P⊥ + P‖
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3. Microscopic interpretation 3.1 Parton distribution function

3. Microscopic interpretation
3.1 Parton distribution function

locally anisotropic systems of particles → two different scales λ⊥ and λ‖, may
be interpreted as the transverse and longitudinal temperature

fLRF = f
„
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,
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«

generalization of Boltzmann equilibrium distribution, Romatschke-Strickland
(RS) form
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is the anisotropy parameter

covariant RS form
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«
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3. Microscopic interpretation 3.2 Energy-momentum tensor

3. Microscopic interpretation
3.2 Energy-momentum tensor and entropy flux

moments of anisotropic distributions

T µν =

Z

d3p pµpν

(2π)3 Ep
f (p · U, p · V ) = (ε + P⊥) UµUν − P⊥ gµν − (P⊥ − P‖)V

µV ν

Sµ =

Z

d3p
(2π)3

pµ

Ep
f (p · U, p · V )

»

1 − ln
„

f (p · U, p · V )

g0

«–

= σUµ

for further analysis most convenient two independent parameters are x
(anisotropy parameter) and σ (non-equilibrium entropy density)

(P⊥, P‖) or (λ⊥, λ‖) −→ (σ, x)
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3. Microscopic interpretation 3.3 Energy, pressure, entropy

3. Microscopic interpretation
3.3 Energy, pressure, entropy for RS form

ε(σ, x) = εid(σ)r(x)

P⊥(σ, x) = Pid(σ)
ˆ

r(x) + 3xr ′(x)
˜

P‖(σ, x) = Pid(σ)
ˆ

r(x) − 6xr ′(x)
˜

r(x) =
x− 1

3

2

»

1 +
x arctan

√
x − 1√

x − 1

–

in equilibrium (x = 1):

εid = 3g0T 4/π2

Pid = g0T 4/π2

σid = 4g0T 3/π2
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3. Microscopic interpretation 3.4 Ansatz for Σ

3. Microscopic interpretation
3.4 Phenomenological ansatz for Σ

the simplest ansatz for Σ (positive, correct dimension, symmetric with respect to
the interchange of λ⊥ and λ‖, vanishes in equilibrium) has the form

Σ =
(λ⊥ − λ‖)

2

λ⊥ λ‖

σ

τeq

=
(1 −

√
x)2

√
x

σ

τeq

τeq is a timescale parameter

consistent with Israel-Stewart theory for small |x − 1| and for purely longitudinal
boost-invariant motion

Σ ≈ (x − 1)2

4τeq

σ

for large |x − 1| various forms of the Σ are conceivable, results of microscopic
models may be used to introduce time dependence of x , in particular one may
use the AdS/CFT correspondence correspondence
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3. Microscopic interpretation 3.5 Connection to kinetic theory

3. Microscopic interpretation
3.5 Connection to kinetic theory

M.Martinez, M.Strickland, Nucl. Phys. A 848 (2010), Nucl. Phys. A 856 (2010)
M.Martinez, R. Ryblewski, M.Strickland, PRC in press
zeroth moment of the Boltzmann equation = entropy production = gluon emission

pµ∂µf = C ≈ −p · U Γ (f − feq), ∂µ

Z

dP pµf =

Z

dP C

Γ is the inverse relaxation time, for the covariant RS form, σ = 4n, one gets

∂µ (σUµ) =
1
4

Z

dP C = Σ ≈ Γ

4
(neq − n) (one equation)

first moment of the Boltzmann equation, energy-momentum conservation

∂µ

Z

dP pνpµf =

Z

dP pνC = ∂µT νµ = 0 (four equations)

Z

dP pνC = −
Z

dP p · U pν Γ (f − feq) = 0 (Landau matching for T (P⊥, P‖) in feq)

5 equations for 5 unknown functions: ~v , P⊥, P‖ similarly as in the phenomenological

approach introduced earlier
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4. Purely-longitudinal boost-invariant motion 4.1 Implementation of boost-invariance

4. Purely-longitudinal boost-invariant motion
4.1 Implementation of boost-invariance

boost-invariant ansatz for U and V

Uµ = (cosh η, 0, 0, sinh η), V µ = (sinh η, 0, 0, cosh η)

τ =
p

t2 − z2, η =
1
2

ln
t + z
t − z

leads to the two equations of motion
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τ
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the first equation is equivalent to:
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1
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«

Σ = 0 −→ x = 1 or dx/dτ = 2x/τ (local equilibrium or free streaming)
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4. Purely-longitudinal boost-invariant motion 4.2 Anisotropy evolution

4. Purely-longitudinal boost-invariant motion
4.2 Anisotropy evolution

for the simple phenomenological ansatz

dx
dτ

=
2x
τ

− 4H(x)

3τeq

where

H(x) =
r(x)

r ′(x)

(1 −
√

x)2

√
x

≈ 45
16

(x − 1) +
195
112

(x − 1)2 + . . .

in Martinez-Strickland’s approach

dx
dτ

=
2x
τ

− 4ΓHMS(x)

3
where

HMS(x) ≈ 3
8

(x − 1) +
17
84

(x − 1)2 + . . .

the two approaches are equivalent close to equilibrium if

Γ =
15

2τeq
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4. Purely-longitudinal boost-invariant motion 4.3 Connection with the Israel-Stewart theory

4. Purely-longitudinal boost-invariant motion
4.3 Connection with the Israel-Stewart theory

close to equilibrium, |ξ| ≪ 1, P‖(x) = Peq − π̄, P⊥(x) = Peq − π̄
2

π̄

εeq

=
8

45
(x − 1) =

8
45

ξ

our equations agree with the evolution equation for π̄ in 0+1 I-S theory:

dπ

dτ
+

4π

3τ
− 16

45
ε

τ
= − 15π

4τeq

→ dπ

dτ
= −4π

3τ
+

4ηπ

3τπτ
− π

τπ

for the identification
1

τeq

=
4

15τπ
, τπ =

5ηπ

Tσeq

similar agreement for the entropy production with I-S:

∂µSµ = σeq
ξ2

4τeq

−→ ∂µSµ =
3π̄2

4ηπT
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5. Non-boost-invariant (3+1)D case 5.1 Initial conditions

5. Non-boost-invariant (3+1)D case
5.1 Initial conditions

Initial evolution time τ0 = 0.25 fm, equilibration time τeq = 0.25 fm and 1 fm

initial anisotropy choices: x0 = 100 (transverse thermalization), x0 = 1 (perfect
fluid), and x0 = 0.032 (longitudinal thermalization)

initial energy density profile (tilted source by P.Bozek)

ε0(τ0, η, x⊥) = εi ρ̃(b, η, x⊥) ρ̃(b, η, x⊥) =
ρ(b, η, x⊥)

ρ(0, 0)

ρ(b, η, x⊥) = (1 − κ)
ˆ

ρ+
W (b, x⊥) f + (η) + ρ−

W (b, x⊥) f− (η)
˜

+ κρB (b, x⊥) f (η)

initial longitudinal profile

f (η) = exp
»

− (η − ∆η)2

2σ2
η

θ(|η| − ∆η)

–

∆η = 1, σ2
η = 1.3

mixing factor κ = 0.14, initial energy density in the center εi chosen separately
for each pair of x and τeq
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5. Non-boost-invariant (3+1)D case 5.2 Generalized EOS

5. Non-boost-invariant (3+1)D case
5.2 Generalized EOS – inclusion of the phase transition

to connect the isotropization with the process of formation of the equilibrated
quark-gluon plasma we may consider the following ansatz

ε(σ, x) = εqgp(σ)r(x)

P⊥(σ, x) = Pqgp(σ)
ˆ

r(x) + 3xr ′(x)
˜

P‖(σ, x) = Pqgp(σ)
ˆ

r(x) − 6xr ′(x)
˜

Here, the functions εqgp(σ) and Pqgp(σ) describe the realistic equation of state :

M. Chojnacki and WF, Acta Phys. Pol. B38 (2007) 3249.
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5. Non-boost-invariant (3+1)D case 5.3 dN/dη of charged particles

5. Non-boost-invariant 3+1D case
5.3 dN/dη of charged particles

Initial anisotropy : x0 = 1 (black), x0 = 100 (blue), and x0 = 0.032 (green)
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5. Non-boost-invariant (3+1)D case 5.4 p⊥ spectra in different y windows

5. Non-boost-invariant (3+1)D case
5.4 p⊥ spectra in different y windows

Initial anisotropy : x0 = 1 (black), x0 = 100 (blue), and x0 = 0.032 (green)
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5. Non-boost-invariant (3+1)D case 5.5 v1 of charged particles

5. Non-boost-invariant (3+1)D case
5.5 pseudorapidity dependence of v1 for charged particles

Initial anisotropy : x0 = 1 (black), x0 = 100 (blue), and x0 = 0.032 (green)
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5. Non-boost-invariant (3+1)D case 5.6 v2(pT ) in midrapidity

5. Non-boost-invariant (3+1)D case
5.6 v2(pT ) in midrapidity

Initial anisotropy : x0 = 1 (black), x0 = 100 (blue), and x0 = 0.032 (green)
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5. Non-boost-invariant (3+1)D case 5.7 v2 of charged particles

5. Non-boost-invariant (3+1)D case
5.7 pseudorapidity dependence of v2 for charged particles

Initial anisotropy : x0 = 1 (black), x0 = 100 (blue), and x0 = 0.032 (green)
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6. Conclusions

6. Conclusions

A framework of highly-anisotropic hydrodynamics with strong dissipation
(ADHYDRO) has been introduced. The effects of dissipation are defined by the
form of the entropy source. The RHIC soft hadronic data described using 2+1D
and 3+1D code.

Initial conditions with extremely different anisotropies lead to similar results,
provided the initial conditions of the evolution are properly readjusted.

Complete thermalization of the system may be delayed to easily acceptable
times of about 1-2 fm/c. The early-thermalization puzzle may be circumvented.
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