Study of Heavy Ion Collisions with Hard Probes

ICFP2012, Kolymbari (Greece) Bolek Wyslouch June 10-16, 2012

Creating hot and dense matter in the laboratory

- High energy nucleus-nucleus collisions at highest energies RHIC@Brookhaven: $\sqrt{s_{NN}}$ = 200 GeV, LHC,@CERN $\sqrt{s_{NN}}$ = 2760 GeV
- Expanding plasma of quarks and gluons with volume of ~1000 fm³ temperature of few * 10¹² K (200-800 MeV) and energy density 10-20 GeV/fm³
- Particle "probes" sensitive to the matter at different stages of the expansion

PbPb collision at LHC

- Central collision (b≈0 fm) at $\sqrt{s_{NN}} = 2.76$ TeV
- >10000 charged particles produced

Hard probes in nuclear collisions

Hot and dense medium

Jets, Quarkonia : originated from the hard scattered partons which carry color charges and interact with the medium. Probe the medium

Photons, W, Z : Colorless, provide initial state information. Nuclear parton distribution function (nPDF).

How do we look at hard probes?

Nuclear modification factors (R_{AA})

Example "hard probe": pair of high p_T quarks

Bolek Wyslouch, ICFP2012, Kolymbari (Greece) June 10-June 16 2012

Typical pp collision: formation of jets

Nuclear collision: partons propagate through medium

Tomographic probes of the medium

- Use hard processes, well understood and/or measured in the pp collisions
 - Quarks, gluons-> hadrons, jets
 - γ, Ζ, W
 - Quarkonia, heavy mesons
- Compare to the same processes in heavy ion collisions (and pA or dA collisions)
- Deduce properties of the hot medium by measuring energy loss, changes in fragmentation, cross section modifications

Centrality in the heavy ion collisions

- Ions are large, R~7 fm, collisions occur with random impact parameter that cannot be directly measured
- Measure the overlap of two ions or number of "participating" or "colliding" nucleons by measuring energy in forward calorimeters

- Energy in calorimeters is ~ to the number of participating nucleons in the overlap region
- Rate of high p_T processes is ~ to the number of colliding pairs of quarks and gluons

Nuclear modification factor at RHIC: single particles

Comparison to proton-proton

New hard probes at LHC: W and Z bosons

No interactions with the hot medium, no energy loss expected!

Bolek Wyslouch, ICFP2012, Kolymbari (Greece) June 10-June 16 2012

LHC confirms large energy loss of hadrons

- Colorless probes are not suppressed: γ, W, Z!
- Strongly interacting particles are suppressed with suppression diminishing towards high p_T : all charged, D, K⁰, Λ , b-quark

Dominated by hydrodynamics arXiv:1202.3233v1

pQCD models of energy loss give reasonable predictions

Bolek Wyslouch, ICFP2012, Kolymbari (Greece) June 10-June 16 2012

R_{AA} across the accelerators

Eur. Phys. J. C 72 (2012) 1945

Bolek Wyslouch, ICFP2012, Kolymbari (Greece) June 10-June 16 2012

Photons in ATLAS

- Hot off the press from ATLAS, confirms that γ escape unquenched..
- Photon yield normalized the Monte Carlo without quenching

Jet quenching: measuring fully formed jets

- High p_T hadrons are typically seen inside jets, can we see the full jet suppression?
- Interactions with hot medium can reduce overall jet rate, modify jet energy, affect fragmentation. Details of energy loss mechanism can distinguish between models of the medium

Disappearing jets I

- We observe large number of dijets with different jet energies
- Interestingly: the two jets are always back-to-back, no angular decorrelations

Bolek Wyslouch, ICFP2012, Kolymbari (Greece) June 10-June 16 2012

17

PLB 712 (2012) 176

Dijet Angular Correlations

Disappearing jets II

Effect confirmed in γ +jet events

Fragmentation Functions, pp and PbPb

Leading and subleading jet in PbPb fragment like jets of corresponding energy in pp collisions

arXiv:1205.5872v1

Possible explanations for jet quenching mechanism

Collinear soft gluon emission

- \rightarrow Excess of low p_T particles inside the jet cone.
- \rightarrow Modified jet fragmentation function

Main idea of many pre-LHC models

Semi-hard, large angle medium induced radiation

 \rightarrow Large dijet p_T asymmetry \rightarrow Mild $\Delta \phi$ broadening

- $\rightarrow \Delta \phi$ broadening
- \rightarrow Third jet / excess of high p_{τ} particles out-of-cone

PYTHIA inspired models

Soft, multiple large angle gluon radiation

 \rightarrow Large dijet p_T asymmetry

- \rightarrow Excess of low p_T particles out-of-cone

AdS/CFT, QCD antenna

Bolek Wyslouch, ICFP2012, Kolymbari (Greece) June 10-June 16 2012

Quarkonia and the QGP

- Heavy quarks
 - produced in the initial hardscattering process
- Colour screening in QGP leads to melting of quarkonia
- Different binding energy of bound states lead to sequential suppression of states with increasing temperature

State		J/ψ (1S)		χ_c (1P)	ψ' (2S)
m (GeV/ c^2)		3.10		3.53	3.68
<i>r</i> ₀ (fm)		0.50		0.72	0.90
Υ (1S)	χ_b (1P)		Υ´ (2S)	χ'_{b} (2P)	Ƴ″ (3S)
9.46	9.99		10.02	10.26	10.36
0.28	0.44		0.56	0.68	0.78
$0.2T_{\rm c} 0.74T_{\rm c} 1.1T_{\rm c} 2.3T_{\rm c}$ E (GeV/fm ³)					
$\lambda_{\rm D} \underbrace{\begin{array}{c} \gamma(3S) & \gamma(2S) \\ \psi' & \chi_{\rm c} \end{array}}_{\psi'} \gamma(1S)$					

Matsui & Satz PLB 178 (1986) 416

Comparing pp and AA at SPS and RHIC

- Similar J/ ψ suppression at the SPS and RHIC!
 - despite 10 × higher $\sqrt{s_{NN}}$
- Suppression does not increase with local energy density
 - R_{AA} (forward) $< R_{AA}$ (mid)
- Possible ingredients
 - cold nuclear matter effects
 - sequential melting
 - regeneration
- What happens at the LHC?
 - higher energy + higher luminosity
 - more charm (more regeneration?)
 - more bottom \rightarrow a new probe

Muon Pairs in PbPb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

New results from LHC, compared to RHIC

Overall similar J/ ψ suppression pattern but differences start to emerge for different rapidity

New hard probe at LHC: Upsilon family

Visible difference between states differing only by the binding energy! pp PbPb

CMS-HIN-11-831ek Wyslouch, ICFP2012, Kolymbari (Greece) June 10-June 16 2012

$\Upsilon(2S)/\Upsilon(1S)$ double ratio

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN11011

Bolek Wyslouch, ICFP2012, Kolymbari (Greece) June 10-June 16 2012

Nuclear Modification Factor: R_{AA}

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{\rm MB}} \frac{N_{\rm PbPb}(\Upsilon(\mathrm{nS}))}{N_{pp}(\Upsilon(\mathrm{nS}))} \frac{\varepsilon_{pp}}{\varepsilon_{\rm PbPb}}$$

- Familiar suppression pattern of $\Upsilon(1S)$ and $\Upsilon(2S)$
- Note: Y(1S) suppression consistent with excited state suppression only (~50% feed down)

Comparison to RHIC

- STAR measured R_{AA} of Υ(1S+2S+3S)
 combined
- CMS: measured R_{AA} of individual states

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN11011

Summary

- Collisions of heavy ions allow us to study hot and dense nuclear matter at densities ~10-20 GeV/fm³ corresponding to temperatures reaching few 10¹² K in volumes of ~10³ fm³
- We use self-produced hard probes and comparing AA collisions to pp at different impact parameters and transverse momenta we do "precision tomography" of the medium.
- Strongly interacting partons are suppressed by the interaction with the medium. New and interesting details are emerging from the recent data.
- Data on quarkonium production and decay is consistent with the sequential melting of states. New probes, e.g. Y family improve precision of our measurements.

