Strings and extra dimensions: Mass hierarchies and experimental signatures

I. Antoniadis

International Conference on New Frontiers in Physics Kolymbari, Crete, Greece, 10-16 June 2012

- High string scale, SUSY and 125 GeV Higgs
- Low scale strings and extra dimensions (flat and warped)
- Extra *U*(1)'s

Beyond the Standard Model of Particle Physics: driven by the mass hierarchy problem

Standard picture: low energy supersymmetry

Advantages:

- natural elementary scalars
- gauge coupling unification
- LSP: natural dark matter candidate
- radiative EWSB

Problems:

- too many parameters: soft breaking terms
- MSSM : already a % ‰ fine-tuning 'little' hierarchy problem

Natural framework: Heterotic string (or high-scale M/F) theory

Higgs-like excess in the light mass region :

- consistent with expectation from precision tests of the SM
- favors perturbative physics (technicolor is falsified again)

If its mass is confirmed around 125 GeV :

- supersymmetry becomes 'severely' fine-tuned, in its minimal version
- but too early to draw a general conclusion before LHC13/14 an extra singlet or split families can remediate the fine tuning to $\lesssim 10$
- very important to measure Higgs couplings any deviation of its couplings to top, bottom and EW gauge bosons implies new light states involved in the EWSB altering the fine-tuning

Alternative answer: Low UV cutoff $\Lambda \sim \text{TeV}$

- low scale gravity \Rightarrow extra dimensions: large flat or warped
- low string scale \Rightarrow low scale gravity, ultra weak string coupling

Experimentally testable framework:

- spectacular model independent predictions
- radical change of high energy physics at the TeV scale

Moreover no little hierarchy problem:

radiative electroweak symmetry breaking with no logs

 $\Lambda \sim$ a few TeV and $m_{H}^{2} =$ a loop factor $imes \Lambda^{2}$ [7]

But unification has to be probably dropped

New Dark Matter candidates e.g. in the extra dims

Framework of type I string theory ⇒ D-brane world I.A.-Arkani-Hamed-Dimopoulos-Dvali '98

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

Dimensions of finite size: *n* transverse 6 - n parallel calculability $\Rightarrow R_{\parallel} \simeq l_{\text{string}}$; R_{\perp} arbitrary

 $M_P^2 \simeq \frac{1}{g_s^2} M_s^{2+n} R_{\perp}^n$ $g_s = \alpha$: weak string coupling Planck mass in 4 + *n* dims: M_*^{2+n}

small M_s/M_P : extra-large R_{\perp}

 $M_{s} \sim 1~{
m TeV} \Rightarrow R_{\perp}^{n} = 10^{32}\,l_{s}^{n}$ [20]

 $R_{\perp} \sim .1 - 10^{-13}$ mm for n = 2 - 6

distances $< R_{\perp}$: gravity (4+*n*)-dim \rightarrow strong at 10⁻¹⁶ cm

Braneworld

2 types of compact extra dimensions:

• parallel (d_{\parallel}) : $\lesssim 10^{-16}$ cm (TeV) • transverse (\perp): $\lesssim 0.1$ mm (meV)

Origin of EW symmetry breaking?

possible answer: radiative breaking I.A.-Benakli-Quiros '00 $V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$ $\mu^2 = 0$ at tree but becomes < 0 at one loop non-susy vacuum simplest case: one scalar doublet from the same brane \Rightarrow tree-level V same as susy: $\lambda = \frac{1}{8}(g_2^2 + g'^2)$ D-terms $\mu^2 = -g^2 \varepsilon^2 M_s^2 \leftarrow \text{effective UV cutoff}$ $e^{2}(R) = \frac{R^{3}}{2\pi^{2}} \int_{0}^{\infty} dll^{3/2} \frac{\theta_{2}^{4}}{16l^{4}\eta^{12}} \left(il + \frac{1}{2}\right) \sum n^{2} e^{-2\pi n^{2}R^{2}l}$

Quartic coupling \Rightarrow mass prediction:

- tree level : $M_H = M_Z$
- low-energy SM radiative corrections (from top quark) : $M_H \sim 120$ GeV Casas-Espinosa-Quiros-Riotto, Carena-Espinosa-Quiros-Wagner '95

Also M_s or $1/R \sim$ a few or several TeV

Increasing $\lambda \rightarrow g^2/4 \sim 1/8 \quad \Rightarrow \quad M_H \simeq v/2 = 125 \text{ GeV}$

Gravitational radiation in the bulk \Rightarrow missing energy

Angular distribution \Rightarrow spin of the graviton

Collider bounds on R_{\perp} in mm			
	<i>n</i> = 2	<i>n</i> = 4	<i>n</i> = 6
LEP 2	$4.8 imes10^{-1}$	$1.9 imes10^{-8}$	$6.8 imes10^{-11}$
Tevatron	$5.5 imes10^{-1}$	$1.4 imes10^{-8}$	$4.1 imes 10^{-11}$
LHC	$4.5 imes10^{-3}$	$5.6 imes10^{-10}$	$2.7 imes10^{-12}$

present LHC bounds:

 $M_*\gtrsim 2-3.5~{
m TeV}$

String-size black hole energy threshold : $M_{\rm BH} \simeq M_s/g_s^2$

Horowitz-Polchinski '96, Meade-Randall '07

weakly coupled theory \Rightarrow strong gravity effects occur much above $\mathit{M_s}, \mathit{M_*}$

 $g_s \sim 0.1 ~({
m gauge ~coupling}) ~~ \Rightarrow ~~ M_{
m BH} \sim 100 M_s$

Comparison with Regge excitations : $M_j = M_s \sqrt{j} \Rightarrow$

production of $j\sim 1/g_s^4\sim 10^4$ string states before reach $M_{
m BH}$

Other accelerator signatures: 3 different scales

string physics

Massive string vibrations \Rightarrow e.g. resonances in dijet distribution

$$M_j^2 = M_0^2 + M_s^2 j$$
; maximal spin: $j + 1$

higher spin excitations of quarks and gluons with strong interactions

• Large TeV dimensions seen by SM gauge interactions [14]

 \Rightarrow KK resonances of SM gauge bosons I.A. '90

$$M_k^2 = M_0^2 + rac{k^2}{R^2}$$
; $k = \pm 1, \pm 2, \dots$ $R = V_{\parallel}^{1/d_{\parallel}}$; $g^2 = 1/(V_{\parallel}M_s^{d_{\parallel}})$

experimental limits: $R^{-1} \gtrsim 0.5 - 4$ TeV (UED - localized fermions)

• extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor from M_s [16]

Universal deviation from Standard Model in dijet distribution

 $M_s = 2 \text{ TeV}$ Width = 15-150 GeV

Anchordoqui-Goldberg-Lüst-Nawata-Taylor-Stieberger '08

present LHC limits: $M_s \gtrsim 4$ TeV

Localized fermions (on 3-brane intersections) [12]

 \Rightarrow single production of KK modes

I.A.-Benakli '94

• strong bounds indirect effects

• new resonances but at most n = 1

Otherwise KK momentum conservation

 \Rightarrow pair production of KK modes (universal dims)

- weak bounds
- no resonances
- lightest KK stable : dark matter candidate

Servant-Tait '02

Extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor

usually associated to known global symmetries of the SM

(anomalous or not) such as (combinations of)

Baryon and Lepton number, or PQ symmetry

Two kinds of massive U(1)'s: I.A.-Kiritsis-Rizos '02

- 4d anomalous U(1)'s: $M_A \simeq g_A M_s$
- 4d non-anomalous U(1)'s: (but masses related to 6d anomalies)

 $M_{NA} \simeq g_A M_s V_2 \leftarrow (6d \rightarrow 4d)$ internal space $\Rightarrow M_{NA} \ge M_A$

or massless in the absence of such anomalies

Standard Model on D-branes

TeV string scale Anchordogui-IA-Goldberg-Huang-Lüst-Taylor '11

- B and L become massive due to anomalies Green-Schwarz terms
- the global symmetries remain in perturbation
 - Baryon number \Rightarrow proton stability
 - Lepton number \Rightarrow protect small neutrino masses

- Lepton number \Rightarrow process _ no Lepton number $\Rightarrow \frac{1}{M_s}LLHH \rightarrow$ Majorana mass: $\frac{\langle H \rangle^2}{M_s}LL$ \sim GeV

• $B, L \Rightarrow$ extra Z's

with possible leptophobic couplings leading to CDF-type Wij events $Z' \simeq B$ lighter than 4d anomaly free $Z'' \simeq B - L$

- $Z' \simeq B$ anomalous and superheavy
- $Z'' \simeq B L$ massless at the string scale (no associated 6d anomaly) but broken at TeV by a Higgs VEV with the quantum numbers of N_R
- L-violation from higher-dim operators suppressed by the string scale
- present LHC limits: $m_{Z''} \gtrsim 2.5$ TeV scale
- interesting LHC phenomenology and cosmology [25]

More general framework: large number of species

N particle species \Rightarrow lower quantum gravity scale : $M_*^2 = M_p^2/N$

Dvali '07, Dvali, Redi, Brustein, Veneziano, Gomez, Lüst '07-'10 derivation from: black hole evaporation or quantum information storage

 $M_* \simeq 1 \text{ TeV} \Rightarrow N \sim 10^{32} \text{ particle species }!$

- 2 ways to realize it lowering the string scale
 - Large extra dimensions SM on D-branes [5]

 $N = R_{\perp}^{n} I_{s}^{n}$: number of KK modes up to energies of order $M_{*} \simeq M_{s}$

Effective number of string modes contributing to the BH bound

 $N = \frac{1}{g_s^2}$ with $g_s \simeq 10^{-16}$ SM on NS5-branes

I.A.-Pioline '99, I.A.-Dimopoulos-Giveon '01

Gauge/Gravity duality \Rightarrow toy 5d bulk model

Gravity background : near horizon geometry (holography) Maldacena '98

Analogy from D3-branes : AdS_5

NS-5 branes : $(\mathcal{M}_6 \otimes \mathbb{R}_+)$

linear dilaton background in 5d flat string-frame metric $|\Phi|=-lpha|y|$

Aharony-Berkooz-Kutasov-Seiberg '98

"cut" the space of the extra dimension \Rightarrow gravity on the brane

$$S_{bulk} = \int d^4x \int_0^{r_c} dy \sqrt{-g} e^{-\Phi} \left(M_5^3 R + M_5^3 (\nabla \Phi)^2 - \Lambda \right)$$
$$S_{vis(hid)} = \int d^4x \sqrt{-g} \left(e^{-\Phi} \right) \left(L_{SM(hid)} - T_{vis(hid)} \right)$$

Tuning conditions: $T_{vis} = -T_{hid} \leftrightarrow \Lambda < 0$ [23]

Randal Sundrum models

spacetime = slice of AdS₅ : $ds^2 = e^{-2k|y|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$ $k^2 \sim \Lambda/M_5^3$

• exponential hierarchy: $M_W = M_P e^{-2kr_c}$ $M_P^2 \sim M_5^3/k$ $M_5 \sim M_{GUT}$

• 4d gravity localized on the UV-brane, but KK gravitons on the IR $m_n = c_n \, k \, e^{-2kr_c} \sim \text{TeV}$ $c_n \simeq (n + 1/4)$ for large n \Rightarrow spin-2 TeV resonances in di-lepton or di-jet channels

Linear dilaton background IA-Arvanitaki-Dimopoulos-Giveon '11

• exponential hierarchy: $g_s^2 = e^{-\alpha|y|}$ $M_P^2 \sim \frac{M_5^3}{\alpha} e^{\alpha r_c}$ $\alpha \equiv k_{RS}$

• 4d graviton flat, KK gravitons localized near SM

LST KK graviton phenomenology

• KK spectrum :
$$m_n^2 = \left(\frac{n\pi}{r_c}\right)^2 + \frac{\alpha^2}{4}$$
; $n = 1, 2, ...$

 \Rightarrow mass gap + dense KK modes $\alpha \sim 1$ TeV $r_c^{-1} \sim 30$ GeV

• couplings :
$$\frac{1}{\Lambda_n} \sim \frac{1}{(\alpha r_c)M_5}$$

 \Rightarrow extra suppression by a factor $(\alpha r_c) \simeq 30$

• width :
$$1/(\alpha r_c)^2$$
 suppression $\sim 1 \text{ GeV}$

 \Rightarrow narrow resonant peaks in di-lepton or di-jet channels

• extrapolates between RS and flat extra dims (n = 1)

 \Rightarrow distinct experimental signals

Conclusions

- Possible discovery of the Higgs scalar at the LHC: big step forward
- Precise measurement of its couplings is of primary importance
- hint of Nature's answer to the mass hierarchy question and of BSM physics
 - natural or unnatural SUSY?
 - low string scale in some realization?
 - something new and unexpected?
- Good chance that next phase of LHC run will provide the answer