

ATLAS Detector Status and Performance

Evangelos N. Gazis NTUA/CERN

on behalf of the ATLAS collaboration

1st ICFP Crete, 10-16 June 2012

Many thanks to the ATLAS Colleagues:

Fabiola Gianotti Maria Curatolo Ana Henriques Sandro Palestini Michael Kobes Guillaume Unal **Richard Hawkings** Francesca Pastore Christoph Rembser **David Storm** Chiara Roda Stephanie Zimmermann EN Gazis/12 Jun 2012

Many talks to ICFP 2012 from our ATLAS Colleagues:

- Sally Seidel : Highlights of ATLAS Experiments
- Lucio Cerrito: Top
- Stephanie Adomeit: QCD
- Nick Charles Edward: W, Z, and diboson physics
- Visili Mitsou: SUSY
- Serhan Mete: New physics searches
- Steve Hillier: Upgrade

Outline:

- 1. LHC @ CERN
- 2. ATLAS Detector Hardware Status
- 3. ATLAS Readiness
- 4. Luminosity
- 5. Pile-up 2011/2012
- 6. Trigger DAQ Computing
- 7. Inner Detector
- 8. Calorimeters
- 9. Muon Systems
- 10. Plan for Upgrade
- 11. Conclusions

EN Gazis/12 Jun 2012

ALICE: 692.59 nb⁻¹

ATLAS: 4.08 fb⁻¹

CMS: 4.27 fb⁻¹ LHCb: 418.81 pb⁻¹

5

- Well organized, productive Xmas technical stop
 - Lot of R2E related work
 - Plus consolidation and improvements of many systems
- Vacuum consolidation to address successfully diagnosed causes of instabilities in 2011
- Injection collimators issues diagnosed and understood spare in preparation - fingers crossed in the meantime
- **Cool-down** of machine exactly on schedule
- Very smooth hardware commissioning including careful quench-less commissioning of main circuits to 4 TeV
- Well oiled Machine checkout final tests and preparation for beam

Peak Luminosity in Atlas

Peak Luminosity in Atlas

ATLAS Status in Brief

	Jan 2012	Today
Recorded luminosity (pp)	5.2 fb ⁻¹ @ 7 TeV	+ 3.9 fb ⁻¹ @ 8 TeV
Peak luminosity	3.6x10 ³³	6.6x10 ³³
Max pile-up	~ 24	~ 38
Data-taking efficiency (pp)	~ 93.5 %	~ 94.5 %
DQ (all CP flags good)	~90% (after reprocessing)	~ 90%
N. of submitted collision-data papers	105	156
N. of CONF-notes	266	318
Talks at conferences since beg year	18	~ 230

In addition: lot of progress on Upgrade; process to prepare ATLAS input to ES in place

 □ Hope to record ~ 5 fb⁻¹ by next MD +TS (19 June)
 → to be used (as much as possible) for Higgs and other results for ICHEP
 □ ATLAS and CMS luminosities seem to be ~ similar in 2012 CMS got ~ 8% more integrated luminosity in 2011

The ATLAS Hardware status

Sub-dectector	Number of Channels	Appr. Operational Fraction
Pixels	80M	95.9%
SCT Silicon strips	6.3M	99.3%
TRT Transition Radiation Tracker	350k	97.5%
LAr EM Calorimeter	170k	99.9%
Tile Calorimeter	9.9k	99.5%
Hadronic Endcap LAr Calorimeter	5.60k	99.6%
Forward LAr calorimeter	3.50k	99.8% 98. 9
LVL1 Calo Trigger	7.15k	100%
LVL1 Muon RPC Trigger	370k	99.5%
LVL1 Muon TGC Trigger	320k	100%
MDT Drift Tubes	350k	99.7%
CSC Cathode Strip Chambers	31k	97.7%
RPC Barrel Muon Chambers	370k	97.1%
TGC Endcap Muon Chambers	320k	99.7%

ATLAS Readiness after 2011-12 Shutdown

Example Liquid-Argon calorimeter:

- 10 front-end boards repaired and 12 new LVPS installed:
- bad channels decreased from 385/182468 to 106/182468 (0.06%)

Example Tile Hadronic calorimeter:

- 45/256 on detector "drawers" opened for refurbishment
- 40/256 new low voltage power supplies replaced, reduce trip rates and noise
- bad cells: before shutdown 5% to 0.5% today

Example infrastructure:

- Cryogenics: NEW main compressor
- Maintenance cryogenics, gas, cooling, access systems and consolidation of the electrical system

ATLAS Readiness after 2011-12 Shutdown

NTUA participated

Muon Spectrometer

Installation MDT EE

(precision MS tracking at $|\eta| \sim 1.2$):

- Side C: completed, 31 modules
- ➡ Side A: 7EELs (completion 2013)

New shielding at |Z|~ 7 m:

reduction of large plume of photons in Muon Spectrometer

Day in 2012

Pile-up challenge 2011

- ~x2 lower than LHC design
- 2011 < pile-up > = 12 (up to 22 max)
- In September increasedx1.5 ($\beta^*=1.5m \rightarrow 1m$)
- 2010 <pile-up> =1.3

Recorded Luminosity [pb

A potential issue for: Lepton Isolation, Vertexing, CPU time/event size, t, Jet Energy Scale/resolution, E_{Tmiss}.

2011 <pile-up> 10⁴ ATLAS Online 2011, √s=7 TeV Ldt=3.02 fb 10³ Peak average Interactions/BX <m>=12 2011 September Until August ---- β * = 1.0 m, <μ> = 11.6 ATLAS Online $\sqrt{s} = 7 \text{ TeV}$ 10² 22E 2011 $= 1.5 \text{ m}, <\mu > = 6.3$ LHC Delivered 20 10 18 16 1 12 10⁻¹ 10 10⁻² 8 10⁻³ 2 22 0 16 18 20 4 6 14 25/02 28/03 28/04 29/05 29/06 30/07 30/08 30/0 EN Gazis/12 Mean Number of Interactions per Crossing 16 Day in 2011 Jun 2012

Z->mm with 20 reconstructed vertices

Z->mm with 25 reconstructed vertices

- Vertex reconstruction in the high track density environments is a challenging task
- Current reconstruction is performing well
 - Our vertex reconstruction efficiency remains very high
- The challenge is to:
 - Cleanly reconstruct each vertex
 - Select the correct vertex for your each analysis

Trigger and DAQ

Date

Trigger and DAQ

Trigger: pile-up robust algorithms and optimization of selections (e.g. isolation) to keep low un-prescaled thresholds (e.g. inclusive e, μ) in spite of x2 larger L and pile-up than in 2011

Trigger during 2012

Level-1 menu: defined at L= 8×10³³ cm⁻²s⁻¹ (8 TeV) for 75kHz with (~10KHz contingency)
 Level-2:

⇒Pile-up insensitive selections for tau and e implemented in Level-2

Number of vertices

Trigger during 2012

22

Improvements

•Pileup robust electron selection, based on 2012 offline selection

•Pileup robust tau selection (see slides)

•Use both inside-out and outside-in muon selections in the EF

Missing E_t (MET) improvements (threshold now lower than in 2011) :
Optimize L1 noise cuts to match 2012 pileup
Fast Front End Board sums at Level 2

•Use offline clustering for EF

•New LT jet finding based on trigger tower information

Item	Lowest unprescaled EF threshold (GeV)	Rate (Hz) @ 5x10 ³³
Thele	24	60
Incl. e	24	00
Incl. µ	24	45
ee	12	8
μμ	13	5
тт	29,20	12
YY	20	10
E _T ^{miss}	80	17
<mark>5</mark> j	55	8

 E_T^{miss} now re-calculated at LVL2 using calo FEB sums \rightarrow sharper turn-on than in 2011

ATLAS Worldwide GRID Computing

Tier0 at CERN:

- First raw data processing
 ~48h after data taking:
- -Calibration/DQ/mask bad channels.
- Data used for physics analysis on GRID in ~ 1 week

Tiers1/Tier2 (~10+~70 sites):

- Simulation
- Re-processing of data and MC
- Physics analysis
- up to 800k jobs/day
- More than 1000 users
- 10 GB/s peak rate (Design 2GB 100,000
- ~66 PetaBytes since LHC start

Excellent computing performance allow results shortly after data taking

Reconstruction software has been improved to deal with higher pileup in 2012

ATLAS Inner detector

- Precise tracking and vertexing,
- e/π separation; coverage: $|\eta| < 2.5$
- B (solenoid) = 2T
- <hits> in barrel ~ 3/8/30 pixel/SCT/TRT;
- $0.5X_0$ at $\eta=0$; $1.1 X_0$ at $\eta=1.8$
- $\sigma_{pT} / p_T = 0.05\% \text{ pT} \oplus 1\%$
- 3 Sub-detectors
- **Si Pixels**: 80M channels ; 3 layers and 3 disks ; $|\eta| < 2.5$
- 10⁶ Si strips (SCT): 6M channels; 4 layers and 9 disks;
- **Transition Radiation Tracker(TRT)** : 350k channels ; $|\eta| < 2.0$

000 of Tracks 008 of 008 of 1008 of 10

Number 2005 Number

400

300

800F

ATLAS Preliminary

√s=7 TeV, <µ> = 26

Data 2011, Default

Simulation, Default

Data 2011, Robust

Simulation, Robust

EN Gazis/12 Jun 2012

2.1m

2.1 m

4.5 tons

Inner detector performance (1)

Inner detector performance (2)

Noise occupancy and hit efficiency exceed the design specifications:

- Hit efficiency: Pixels/SCT>>99% ; TRT >95%
- Noise Occupancy: Pixel < 10^{-9} ; SCT < $5x10^{-4}$, TRT ~ 2%.
- Good TRT particle identification over all $\boldsymbol{\eta}$

Number of pixel, SCT and TRT hits for tracks meeting the robust requirements in data taken at medium and high pile-up.

The distributions are normalized to the same number of reconstructed tracks.

The Atlas calorimeter ($|\eta| < 4.9$)

Lar-Pb EM calorimeter:

- e/γ trigger, identification; measurement
- 3 longitudinal layers with different granularity: 2.5 < η <3.2 only 2 layers, extra presampler layer for η <1.8, σ/E \sim 10% \sqrt{E}
- Barrel |η|<1.475, End-cap 1.375<|η|<3.2
- 173k channels

EM-Calo Performance-Resonances with known particles and searching for new ones

Hadron calorimeter performance

- Good performance, agreement with MC (within 10%) thanks to >10 years test-beam, cosmics. Resolution close to design:

- constant term ~3% at ~2TeV (GCW/LCW/GS calibrations)

- Further improvement of 10% on resolution using track-jet based calibration method (TBJC).

-2011: Pile-up worsen low pt resolution by \sim 20%. Improvements expected after pile-up corrections for in-time/out-time bunches/noise threshold tuning (LAr drift time ~500ns ; bipolar shaping designed for $\langle E_{\tau} \rangle \sim 0$ at 25ns bunch spacing)

E/p response in Tile had. calorimeter

Jet resolution (Lar+Tilecal ($|\eta| < 0.8$)

Et^{miss} Performance

- Key element for many searches and precise measurements (SUSY, top,...)

- Sensitive to calorimeter performance
- Good resolution in p and Pb collisions:
- $\sigma(E_T)=0.48X\Sigma E_T$
- Good data-MC agreement
- No tails in min.bias sample
- -Scale precision ~2% (W->ev ;W-> μ v)

MET Resolution in data & MC:

Highest-mass dijet event taken on 14 April 2012

 $\begin{array}{l} \text{Mjj} = 4.23 \ \text{TeV} \\ \text{Jet 1:} \ p_{\text{T}} = 1.36 \ \text{TeV}, \ \eta = -1.02, \ \phi = 3.01 \\ \text{Jet 2:} \ p_{\text{T}} = 1.29 \ \text{TeV}, \ \eta = 1.06, \ \phi = 0.09 \\ \text{Etmiss} = 125 \ \text{GeV}, \ \phi = -0.44 \\ \text{Sum Et} = 3.33 \ \text{TeV} \\ p_{\text{T}} \ (\text{cut}) = 0.5 \ \text{GeV} \end{array}$

The Atlas Muon Spectrometer(MS)

4 chambers types gas based ($|\eta| < 2.7$) 1.1x10⁶ channels ; 12000 m³

Precision chambers : MDT ; CSC Trigger chambers (LVL1): RPC ; TGC

Muon trigger and measurement Alignment accuracy: ~ $30-40 \mu m$ MDT resolution = $80 \mu m (|\eta| < 2)$ CSC resolution = $60 \mu m (2 < |\eta| < 2.7)$

Momentum resolution (ID+MS) $|\eta| < 1.1$: $\sigma p_T/p_T \sim 10\%$ ($p_T \sim 1$ TeV) $\sigma p_T/p_T \sim 2\%$ ($p_T = 50$ GeV)

ATLAS MAGNET SYSTEM

- 4 Superconducting magnets:
- Solenoid around ID (B=2T;7.6 kA)
- 3 Air core Toroids (with 8 coils each: 22.0 kA)
- B_{toroid} ~0.5-1T

Muon Spectrometer performance (1)

p₋ = 100 GeV

 $0.3 < |\eta| < 0.65$

2011

- Alignment precision continuously been improved: - barrel: cosmics->collisions (60µm->50µm).
- End-cap: collisions with B_{off} (180µm ->100µm)
- Goal is 30-40 mm with more calibration runs (B_{off})
- $\sigma p_T/p_T$ close to design up to ~100GeV: - At low P_t mult. scattering in ID dominate (~2%) -TeV region improvement after better alignment
- 99% reconstruction efficiency (pt>20GeV) •
- Good agreement data-MC

Muon reconstruction efficiency vs p_{T}

Transverse momentum resolution (%)

12

10

ATLAS

Stand-alone

Combined

Muon Resonances searches for discoveries B_c observation ATLAS-CONF-2012-028 $Also \lambda_lifetime$

MUON Upgrade

To improve the high-rate trigger efficiency at the S-LHC phase and to avoid fake triggers

Background for 20 GeV muons all in endcap

LHC plans (LS1, LS2, LS3)

LS = Long Shutdown

Conclusions

- ATLAS had an excellent year in 2011 due to the high luminosity delivered by LHC and the hard work of the collaboration to deal with high pileup. ATLAS is exploiting the full physics potential of LHC.
- Many excellent physics results based on the 2011 run are presented in detail to the summer conferences
- Data taking in 2012 is proceeding smoothly and improvements for high pileup have been largely successful
- ATLAS is working diligently to design and build upgrades to cope with the high luminosities expected after LS1, LS2 and LS3
- The upgrade R&D and projects are getting at full speed.

Many thanks to LHC machine for it's excellent performance!

Backup slides

ZZ* ->4m candidate

$M_{Z,1}$ =90.6GeV ; $M_{Z^{*},2}$ =47.4 GeV; M_{4m} =143.5GeV

Standard Model

Higgs

EN Gazis/12 June 2012

95% CL Limit on $\sigma/\sigma_{\text{SM}}$

New conference notes on lightest third generation scenarios:
ATLAS-CONF-2012-058: Search for gluino-mediated scalar top and bottom quark production in final states with missing transverse energy and at least three *b-jets*ATLAS-CONF-2012-059: Search for light scalar top quark pair production in final states with two leptons

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 2012)

			· · · · · · · · · · · · · · · · · · ·	
	MSUGRA/CMSSM : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	1.40 TeV $\tilde{q} = \tilde{g}$ mass	
clusive searches	MSUGRA/CMSSM : 1-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041]	1.20 TeV $\tilde{q} = \tilde{g}$ mass	$\int Ldt = (0.03 - 4.7) \text{ fb}^{-1}$
	MSUGRA/CMSSM : multijets + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037]	850 GeV \tilde{g} mass (large m_0)	≰s = 7 TeV
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	<u>1.38 теv</u> q̃ mass (<i>m</i> (g̃) < 2 TeV	light $\tilde{\chi}_1^0$ ATLAS
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	940 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ light})$	$\widetilde{\chi}_{1}^{0}$ Preliminary
	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q \overline{q} \tilde{\chi}^{\pm}$) : 1-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041]	900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV}, m$	$m(\widetilde{\chi}^{\pm}) = \frac{1}{2}(m(\widetilde{\chi}^{0}) + m(\widetilde{g}))$
	GMSB : 2-lep OS _{SF} + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156]	810 Gev \tilde{g} mass (tan $\beta < 35$)	2
Ц	GMSB : $1-\tau + j's + E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005]	920 GeV \tilde{g} mass (tan β > 20)	
	GMSB : $2-\tau + j's + E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002]	990 GeV \widetilde{g} mass (tan $\beta > 20$)	
	$GGM: \gamma\gamma + E_{T,miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116]	805 GeV \widetilde{g} mass $(m(\widetilde{\chi}_1^0) > 50 \text{ GeV})$	
~	Gluino med. \tilde{b} ($\tilde{g} \rightarrow b\bar{b}\chi^0$) : 0-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003]	900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 300 \text{ GeV})$	
d generation	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t}\chi^0$) : 1-lep + b-j's + $E_{T \text{ miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003]	710 GeV \widetilde{g} mass $(m(\widetilde{\chi}_{+}^{0}) < 150 \text{ GeV})$	
	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$) : 2-lep (SS) + j's + $E_{T,\text{miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-004]	650 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 210 \text{ GeV})$	
	Gluino med. $\tilde{t}'(\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{i}^{0})$: multi-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037]	830 GeV \widetilde{g} mass $(m(\widetilde{\chi}_{+}^{0}) < 200 \text{ GeV})$	
Thirc	Direct \widetilde{bb} ($\widetilde{b}_1 \rightarrow b\widetilde{\chi}_{\perp}^0$) : 2 b-jets + $E_{T \text{ miss}}$	L=2.1 fb ⁻¹ (2011) [1112.3832]	390 GeV \tilde{b} mass $(m(\tilde{\chi}_{4}^{0}) < 60 \text{ GeV})$	
L	Direct $\widetilde{t}\widetilde{t}$ (GMSB) : Z(\rightarrow II) + b-jet + E	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-036]	310 GeV \tilde{t} mass (115 < $m(\tilde{\chi}_{1}^{0})$ < 230 GeV)	
(7	Direct gaugino $(\tilde{\chi}_{\pm}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow 3I \tilde{\chi}_{\pm}^{0})$: 2-lep SS + $E_{T \text{ miss}}$	L=1.0 fb ⁻¹ (2011) [1110.6189] 170 GeV	$\widetilde{\chi}_{\star}^{\pm}$ mass ($(m(\widetilde{\chi}_{\star}^{0}) < 40 \text{ GeV}, \widetilde{\chi}_{\star}^{0}, m(\widetilde{\chi}_{\star}^{\pm}) = m(\widetilde{\chi}_{0}^{0}), m(\widetilde{l}, \widetilde{\chi}_{\star}^{0})$	\tilde{v}) = $\frac{1}{2}(m(\tilde{\chi}_1^0) + m(\tilde{\chi}_2^0)))$
Ď	Direct gaugino $(\tilde{\chi}^{\pm}\tilde{\chi}^{0}_{a} \rightarrow 3I \tilde{\chi}^{0})$: 3-lep + $E_{T \text{ miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 25	o Gev $\tilde{\chi}_{\star}^{\pm}$ mass $(m(\tilde{\chi}_{\star}^{0}) < 170 \text{ GeV}, \text{ and as above})$	2 1 2
Se	AMSB : long-lived $\widetilde{\chi}_4^{\pm}$	L=4.7 fb ⁻¹ (2011) [CF-2012-034] $\widetilde{\chi}^{\pm}_{+}$ [mass $(1 < \tau(\tilde{\chi}_{1}^{\pm}) < 2 \text{ ns}, 90 \text{ GeV limit in } [0.2,90] \text{ ns})$	
rticle	Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984]	562 Gev g mass	
l pa	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984]	294 Gev b mass	
ivec	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984]	309 GeV t mass	
l-gn	SMP : R-hadrons (Pixel det. only)	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-022]	810 Gev g mass	
ГО	GMSB : stable $\tilde{\tau}$	<i>L</i> =37 pb ⁻¹ (2010) [1106.4495] 136 GeV $\widetilde{\tau}$	mass	
	RPV : high-mass e	L=1.1 fb ⁻¹ (2011) [1109.3089]	1.32 TeV \tilde{v}_{τ} mass ($\lambda_{311}^{2}=0.10, \lambda_{31}$	(2=0.05)
νdε	Bilinear RPV : 1-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [1109.6606]	760 GeV $\tilde{q} = \tilde{g}$ mass (c $\tau_{I,SP} < 15$ mm)	
<u> </u>	MSUGRA/CMSSM - BC1 RPV : 4-lepton + E _{T,miss}	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-035]	1.77 TeV g mass	
	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	L=34 pb ⁻¹ (2010) [1110.2693] 185 GeV	sgluon mass (excl: $m_{sg} < 100 \text{ GeV}, m_{sg} \approx 140 \pm 3$	GeV)
		10 ⁻¹	1	10
* 0				Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

Exotics

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: March 2012)

	Large ED (ADD) · monoiet	/ -1.0 fb ⁻¹ (2011) [ATLAS-CONE-2011-096]	32 TeV M_{\odot} ($\delta = 2$)	
	Large ED (ADD) : diphoton	$L = 2.1 \text{ fb}^{-1} (2011) [1112 2104]$	3.0 ToV M ₀ (GBW cut-	off) ATLAC
	$UED : \gamma\gamma + E$	$L = 2.1 \text{ fb}^{-1} (2011) [1111 4116]$	1 22 Tay Compact scale 1/B (SPS	AILAS B) Droliminary
SUC	BS with $k/M_{\rm m} = 0.1$ diphoton m	$l = 2.1 \text{ fb}^{-1}(2011) [1112 2194]$	1 85 Toy Graviton mass	
ısic	BS with $k/M_{-1} = 0.1$ i dilepton m_{-1}	$l = 4.9.5 \ 0 \ \text{fb}^{-1}(2011) \ [ATLAS-CONE-2012-007]$	2 16 Tay Graviton mass	c
neı	RS with $k/M_{\rm Pl} = 0.1$; ZZ resonance, $m_{\rm eff}$	$L = 1.0 \text{ fb}^{-1}$ (2011) [1202 0719]	Receive Graviton mass	$Ldt = (0.04 - 5.0) \text{ fb}^{-1}$
dir	BS with $a = 0.20 \text{ th} \rightarrow 1 \text{ triefs} m$	L = 1.0 HD (2011) [1203.0716]	1 02 Toy	
dra	ADD BH (M_{T})/ M_{p} =3) : multijet, Σp , N_{c} , tt	/ -35 pb ⁻¹ (2010) [ATLAS-CONE-2012-023]	1 37 TeV $M_{\rm e}$ (λ =6)	IS=7 lev
Û	ADD BH $(M_{TI}/M_{P}=3)$: SS dimuon, N_{T}	$l = 1.3 \text{ fb}^{-1}$ (2011) [1111 0080]	1.25 TeV $M_{\rm D} (\delta=0)$	
	ADD BH ($M_{TH}/M_{p}=3$) : leptons + jets. Σp	$l = 1.0 \text{ fb}^{-1}$ (2011) [ATLAS-CONE-2011-147]	15 TeV $M_{\rm p}$ ($\delta=6$)	
	Quantum black hole : dijet, F (m_{ij})	$l = 4.7 \text{ fb}^{-1} (2011) [ATLAS CONF-2012-038]$	$\frac{100000}{4.11 \text{ TeV}} M_{\rm P} (\delta=6)$	
	qqqq contact interaction : $\chi(m)$	$L=4.8 \text{ fb}^{-1}$ (2011) [ATLAS-CONF-2012-038]	7.8 TeV Λ	
G	qqll CI : ee, $\mu\mu$ combined, \vec{m}_{μ}	$L=1.1-1.2 \text{ fb}^{-1}(2011) [1112.4462]$	10.2 TeV	Λ (constructive int.)
	uutt CI : SS dilepton + jets + $E_{T \text{ miss}}$	L=1.0 fb ⁻¹ (2011) [1202.5520]	1.7 TeV	, , ,
	SSM Z' : m _{ee/uu}	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.21 TeV Z' mass	
2	SSM W': m _{T.e/u}	<i>L</i> =1.0 fb ⁻¹ (2011) [1108.1316]	2.15 TeV W' mass	
a	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	<i>L</i> =1.0 fb ⁻¹ (2011) [1112.4828]	660 Gev 1 st gen. LQ mass	
Γ	Scalar LQ pairs (β =1) : kin. vars. in $\mu\mu$ jj, $\mu\nu$ jj	L=1.0 fb ⁻¹ (2011) [Preliminary]	685 Gev 2 nd gen. LQ mass	
S	4^{th} generation : Q $\overline{Q}_{4} \rightarrow WqWq$	L=1.0 fb ⁻¹ (2011) [1202.3389] 350 GeV	$I_{\rm Q}$ mass	
ark	4^{th} generation : $\vec{u}_{4} \vec{u}_{4} \rightarrow WbWb$	L=1.0 fb ⁻¹ (2011) [1202.3076] 404 G	iev u ₄ mass	
, du	4^{th} generation : $\mathbf{\hat{d}}_{a} \mathbf{\bar{d}}_{a} \rightarrow \text{WtWt}$	L=1.0 fb ⁻¹ (2011) [Preliminary] 48	o Gev d ₄ mass	
lew	New quark b' : b'b'→ ⁴ Zb+X, m _{zb}	L=2.0 fb ⁻¹ (2011) [Preliminary] 400 G	ev b' mass	
<	$TT_{exo, 4th gen} \rightarrow t\bar{t} + A_0A_0 : 1 - lep + jets + E_{T, miss}$	L=1.0 fb ⁻¹ (2011) [1109.4725] 420 (_{Gev} T mass (<i>m</i> (A ₀) < 140 GeV)	
rm.	Excited quarks : γ -jet resonance, $\dot{m}_{\gamma jet}$	L=2.1 fb ⁻¹ (2011) [1112.3580]	2.46 TeV q* mass	
. fe	Excited quarks : dijet resonance, \dot{m}_{jj}	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	3.35 TeV q* mass	
xcit	Excited electron : e- γ resonance, $m_{e\gamma}$	L=4.9 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	2.0 TeV e^* mass ($\Lambda = m(e^*)$)	
Щ 	Excited muon : μ - γ resonance, $m_{\mu\gamma}$	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	1.9 TeV μ^* mass ($\Lambda = m(\mu^*)$)	
	Iechni-hadrons : dilepton, $m_{ee/\mu\mu}$	L=1.1-1.2 fb ⁻¹ (2011) [ATLAS-CONF-2011-125] 47	0 GeV ρ_T / ω_T mass $(m(\rho_T / \omega_T) - m(\pi_T) = 100 \text{ GeV}$	V)
	Techni-hadrons : WZ resonance (VIII), m	L=1.0 fb ⁻¹ (2011) [Preliminary] 48	3 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{W}, m(a_{T}) = 1$	1.1 <i>m</i> (ρ _T))
Ł	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary]	1.5 TeV N mass (<i>m</i> (W _R) = 2 TeV	/)
the	W_R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary]	2.4 TeV W _R mass (<i>m</i> (N) <	< 1.4 GeV)
Õ	$H_{L}^{\mu\nu}$ (DY prod., BR($H^{\mu\nu} \rightarrow \mu\mu$)=1): SS dimuon, m	L=1.6 fb ⁻¹ (2011) [1201.1091] 355 GeV	H_{L}^{\perp} mass	
	Color octet scalar : dijet resonance, m_{ij}	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	1.94 TeV Scalar resonance ma	ass
	Vector-like quark : CC, m _{lvq}	L=1.0 fb ⁻¹ (2011) [1112.5755]	900 GeV Q mass (coupling $\kappa_{qQ} = v/m_Q$)	
	vector-like quark : NC, m _{llg}	L=1.0 fb ⁻⁺ (2011) [1112.5755]	760 GeV Q mass (coupling $\kappa_{qQ} = \nu/m_Q$)	1 1 1 1 1 1 1 1 1
		10 ⁻¹		0 10
		10		
* 0				wass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

Main Improvements to Physics Capabilities

- 1. New small Be pipe
- 2. New insertable pixel b-layer (IBL) (drives shutdown schedule)
- Finish the installation of the EE muon chambers staged in 2003 +additional chambers in the feet (new electronics) and elevators region
- 4. Add topological processing in level 1 of trigger
- 5. Improve L1 trigger readout rate to 100kHz

IBL preserves current physics performance at high pileup

Phase-I (installation in or before 2018)

Major Projects

- 1. New muon small wheels with more trigger granularity and trigger track vector information
- 2. Higher-granularity calorimeter LVL1 trigger and associated front-end electronic
- 3. Fast track processor (FTK) using SCT and pixel hits (input to LVL2) expected installation before 2018
- Forward physics detection station at 220m for new diffractive physics (full 3D edgeless and timing detectors, target 2017)
- 5. Topological trigger processors combining LVL1 information from different regions of interest (improvements starting well before 2018)

Phase-II (installation 2022-23)

Likely upgrades:

1. New Inner Detector (strips and pixels)

Very substantial progress in many R&D areas

- 2. New LAr front-end and back-end electronics
- 3. New Tiles front-end and back-end electronics
- 4. TDAQ upgrade (add level 0 to the trigger?)

Under study:

- 1. LAr new FCAL
- 2. LAr HEC cold electronics consolidation
- 3. Muon Barrel and Large Wheel system upgrade
- 4. L1 track trigger
- 5. LUCID upgrade