
KATRIN:

Probing Nature's Smallest Mass Scale
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Neutrino Mass in Context
1970: R Davis, Jr. and J Bahcall 
start counting Ar atoms produced

by solar 's in a tank of dryν
cleaning fluid, coming up short-

B Pontecorvo and V Gribov think
they might know why...
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Neutrino Mass in Context
1970: R Davis, Jr. and J Bahcall 
start counting Ar atoms produced

by solar 's in a tank of dryν
cleaning fluid, coming up short-

B Pontecorvo and V Gribov think
they might know why...

1998: The Super-Kamiokande
experiment shows the mechanism

that Pontecorvo and Gribov proposed 
is responsible: neutrino oscillations

occur, implying neutrinos have mass
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Neutrino Mass in Context

● neutrino flavor 
eigenstates are 
different from their 
mass eigenstates

● PNMS matrix for 
neutrinos is 
analogous to CKM 
matrix for quarks

● all mixing angles have 
been measured

M
as

s 
S

qu
ar

ed
 [e

V
2 ]

[ mΔ 32]
2 = ~2 · 10-3 eV2

[ mΔ 21]
2 = ~7 · 10-5 eV2



15 Jun 2012 D Furse - ICFP 2012 5

Neutrino Mass in Context

● most common 
fermion in the 
universe (336 cm-3)

● massive neutrinos act 
as hot dark matter 
and erase small scale 
structures
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Neutrino Mass in Context

● most common 
fermion in the 
universe (336 cm-3)

● massive neutrinos act 
as hot dark matter 
and erase small scale 
structures

numerical simulations of large
scale structure in the universe
with different neutrino masses

mν = 0 eV

mν ~ 1 eV
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Neutrino Mass in Context

● most common 
fermion in the 
universe (336 cm-3)

● massive neutrinos act 
as hot dark matter 
and erase small scale 
structures

● neutrino contribution 
to matter density still 
only roughly known
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Neutrino Mass in Context

● neutrinos are 
between five and six 
orders of magnitude 
lighter than the 
electron

● neutrinos may have 
majorana mass

● fine-tuning problem, 
new fundamental 
physics scale
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Neutrino Mass from Tritium Decay

● half life of 12.3 years
● 18.6 keV of decay 

energy distributed 
among three products

● neutrino escapes 
undetected, but its 
mass affects the 
electron spectrum 
from kinematics alone
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Neutrino Mass from Tritium Decay

line shape
for mν = 0

line shape
for mν > 0
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● neutrino mass 
reduces endpoint 
electron energy

● spectrum tail acquires 
a characteristic 
curvature

● only one in 2 · 1013 
electrons falls in the 
relevant region of the 
spectrum

final eV of tritium beta spectrum
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Neutrino Mass from Tritium Decay

line shape
for mν = 0

line shape
for mν > 0
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● neutrino mass 
reduces endpoint 
electron energy

● spectrum tail acquires 
a characteristic 
curvature

● only one in 2 · 1013 
electrons falls in the 
relevant region of the 
spectrum

final eV of tritium beta spectrumAny neutrino mass experiment exploiting the 
tritium endpoint must solve two problems:

● Luminosity – electrons useful in determining the
 neutrino mass are extremely rare

● Resolution – beta electron spectroscopy must
 be performed to better than 10-5 precision at
 nearly 20 keV
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KATRIN: Overview

Source Section:  gaseous tritium injected and removed
under a high magnetic field which guides electrons
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Spectrometer Section: beta electrons are analyzed using the 
MAC-E principle, electrons with enough energy are transmitted
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KATRIN: Overview

Transport Section:  residual tritium removed and remaining
ions analyzed, high B-field transports electrons downstream

Source Section:  gaseous tritium injected and removed
under a high magnetic field which guides electrons

Spectrometer Section: beta electrons are analyzed using the 
MAC-E principle, electrons with enough energy are transmitted

Detector Section: electrons undergo acceleration and are counted
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Source: The WGTS

T
2
 injectionT

2
 removal T

2
 removal

B = 3.6 T e- (to transport section)

• pump tritium into beamline and then pump it all out again under 
 high magnetic field
• electrons decaying in the beamline will be pinned to
 magnetic field lines, allowing them to be transported downstream
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Source: The WGTS

T
2
 injectionT

2
 removal T

2
 removal

B = 3.6 T e- (to transport section)

• removed tritium is recovered and re-injected with the help of a
 complex gaseous loop system
• column areal density must be extremely stable, which implies
 demanding pressure and temperature stability requirements
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Source: The WGTS
● parameters:

● 1.7 · 1011 decays per second
● tritium throughput of 40 kg/year

● requirements:
● temperature stability of 30 mK at 27 K
● pressure stability of 10-3

● isotope composition stability of 10-3



15 Jun 2012 D Furse - ICFP 2012 20

Source: The WGTS

● WGTS demonstrator delivered in 2010
● temperature, pressure and composition performance are 
 all much better than targets from error budget

● WGTS magnets now being tested at Saclay facility
● WGTS demonstrator conversion to full WGTS in 2012
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Transport: The DPS

e-

(to CPS)

ion traps

● four large turbopumps remove residual tritium from WGTS
● chicane prevents direct path from source to spectrometers
● two ion traps can be switched on to measure tritium
 reduction factor, dipoles eliminate residual ions

● strong, uniform magnetic field maintained for transport
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Transport: The CPS

e-

argon snow

condensed
83mKr

source

(to spectrometers)

● layer of argon snow removes final residual tritium inbound
 from the DPS

● second chicane to further shield spectrometer section
● condensed krypton source to provide calibration of
 transmission function in tritium-free conditions
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Transport: The DPS and CPS

 parameters and
 requirements:

● guiding field of 5.6 T
● reduction of ion flow by a

factor of 105

● reduction of tritium flow by
a factor of 1014
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Transport: The DPS and CPS

● DPS flow reduction without 
 ion traps in agreement with
 simulations and within
 performance targets

● CPS diodes being refitted
 by ASG, delivery in 2014
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Analysis: The Spectrometers

B = 6 T

B ~ 1 mT

V = 18.6 kV

wire electrodes
● internal electrode system provides a potential smoothly
 ranging from 0 V to 18 kV

● magnetic field ranges from a maximum of 6 T at ports to
 about 1 mT in the central region
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Interlude: The MAC-E Principle

if an electron is moving in a magnetic field that
varies little over a single cyclotron gyration, the
orbital magnetic moment of the electron is an

adiabatic invariant of its motion

e- μ ~           = constant
B

(pT)2
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Interlude: The MAC-E Principle

if an electron is moving in a magnetic field that
varies little over a single cyclotron gyration, the
orbital magnetic moment of the electron is an

adiabatic invariant of its motion

e- μ ~           = constant
B

(pT)2

an isotropic momentum
distribution at high field 

can be transformed into a
collimated distribution by

weakening the field gently

the collimated electrons
can then be analyzed by

an electrostatic filter
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Analysis: The Spectrometers

B = 6 T

B ~ 1 mT

V = 18.6 kV

wire electrodes

● resolution of MAC-E filter depends on the ratio Bmin/Bmax

● high resolution spectrometers are also excellent magnetic bottles
● electrons from nuclear decays in the spectrometer are trapped
 in the bottle causing backgrounds
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Analysis: The Spectrometers

● requirements:
● vacuum of 10-11 mbar
● high voltage stability of 20 mV at 18 kV
● energy resolution of better than 1 eV
● total background of less than 10 mHz

● parameters:
● diameter of 10 m
● length of 23.6 m
● volume of 1240 m3

● 23000 wires in
248 modules
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Analysis: The Spectrometers

● wire electrode installation completed
● spectrometer sealed in may 2012
● spectrometer commissioning to
 start this summer
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Signal: The FPD
 parameters and
 requirements:

● pinch magnet field of 6 T
● focusing magnet field

of 3 – 5 T
● post acceleration of up to

30 kV
● 148 equal-area 

pixels
● >1 mHz of intrinsic

background
● E/E of < 3%Δ
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Signal: The FPD

● Built at Univ. of Washington
● Delivered to KIT in 2010
● Commissioning in final
 stages, complete this year
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Summary

● neutrino mass is a 
powerful piece of 
information in our 
understanding of the 
universe

● all main KATRIN 
components are 
nearly complete

● scheduled first data to 
come in 2015!
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Summary

● neutrino mass is a 
powerful piece of 
information for our 
understanding of the 
universe

● all main KATRIN 
components are 
nearly complete

● scheduled first data to 
come in 2015!

Thanks for your attention...

... let's have a coffee!
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