

1970: R Davis, Jr. and J Bahcall start counting Ar atoms produced by solar v's in a tank of dry cleaning fluid, coming up short-B Pontecorvo and V Gribov think they might know why...

1970: R Davis, Jr. and J Bahcall start counting Ar atoms produced by solar v's in a tank of dry cleaning fluid, coming up short-B Pontecorvo and V Gribov think they might know why...

1998: The Super-Kamiokande experiment shows the mechanism that Pontecorvo and Gribov proposed is responsible: neutrino oscillations occur, implying neutrinos have mass

- neutrino flavor
 eigenstates are
 different from their
 mass eigenstates
- PNMS matrix for neutrinos is analogous to CKM matrix for quarks
- all mixing angles have been measured

- most common fermion in the universe (336 cm⁻³)
- massive neutrinos act as hot dark matter and erase small scale structures

 most common fermion in the universe (336 cm⁻³)

 massive neutrinos act as hot dark matter and erase small scale structures

numerical simulations of large scale structure in the universe with different neutrino masses

- most common fermion in the universe (336 cm⁻³)
- massive neutrinos act as hot dark matter and erase small scale structures

numerical simulations of large scale structure in the universe with different neutrino masses

- most common fermion in the universe (336 cm⁻³)
- massive neutrinos act as hot dark matter and erase small scale structures
- neutrino contribution to matter density still only roughly known

- neutrinos are between five and six orders of magnitude lighter than the electron
- neutrinos may have majorana mass
- fine-tuning problem, new fundamental physics scale

Neutrino Mass from Tritium Decay

- half life of 12.3 years
- 18.6 keV of decay energy distributed among three products
- neutrino escapes undetected, but its mass affects the electron spectrum from kinematics alone

Neutrino Mass from Tritium Decay

- neutrino mass reduces endpoint electron energy
- spectrum tail acquires a characteristic curvature
- only one in 2 · 10¹³
 electrons falls in the
 relevant region of the
 spectrum

final eV of tritium beta spectrum

Neutrino Mass from Tritium Decay

Any neutrino mass experiment exploiting the tritium endpoint must solve two problems:

- Luminosity electrons useful in determining the neutrino mass are extremely rare
- Resolution beta electron spectroscopy must be performed to better than 10⁻⁵ precision at nearly 20 keV

opccirum

Source Section: gaseous tritium injected and removed under a high magnetic field which guides electrons

Source Section: gaseous tritium injected and removed under a high magnetic field which guides electrons

Transport Section: residual tritium removed and remaining ions analyzed, high B-field transports electrons downstream

Source Section: gaseous tritium injected and removed under a high magnetic field which guides electrons

Transport Section: residual tritium removed and remaining ions analyzed, high B-field transports electrons downstream

Spectrometer Section: beta electrons are analyzed using the MAC-E principle, electrons with enough energy are transmitted

Source Section: gaseous tritium injected and removed under a high magnetic field which guides electrons

Transport Section: residual tritium removed and remaining ions analyzed, high B-field transports electrons downstream

Spectrometer Section: beta electrons are analyzed using the MAC-E principle, electrons with enough energy are transmitted

Detector Section: electrons undergo acceleration and are counted

Source: The WGTS

- pump tritium into beamline and then pump it all out again under high magnetic field
- electrons decaying in the beamline will be pinned to magnetic field lines, allowing them to be transported downstream

Source: The WGTS

- removed tritium is recovered and re-injected with the help of a complex gaseous loop system
- column areal density must be extremely stable, which implies demanding pressure and temperature stability requirements

Source: The WGTS

Transport: The DPS

- four large turbopumps remove residual tritium from WGTS
- chicane prevents direct path from source to spectrometers
- two ion traps can be switched on to measure tritium reduction factor, dipoles eliminate residual ions
- strong, uniform magnetic field maintained for transport

 15 Jun 2012 D Furse ICFP 2012

Transport: The CPS

- layer of argon snow removes final residual tritium inbound from the DPS
- second chicane to further shield spectrometer section
- condensed krypton source to provide calibration of transmission function in tritium-free conditions

Transport: The DPS and CPS

• guiding field of 5.6 T

 reduction of ion flow by a factor of 10⁵

 reduction of tritium flow by a factor of 10¹⁴

Transport: The DPS and CPS

Analysis: The Spectrometers

- internal electrode system provides a potential smoothly ranging from 0 V to 18 kV
- magnetic field ranges from a maximum of 6 T at ports to about 1 mT in the central region 15 Jun 2012

Interlude: The MAC-E Principle

if an electron is moving in a magnetic field that varies little over a single cyclotron gyration, the orbital magnetic moment of the electron is an adiabatic invariant of its motion

$$\mu \sim \frac{(p_T)^2}{B} = constant$$

Interlude: The MAC-E Principle

if an electron is moving in a magnetic field that varies little over a single cyclotron gyration, the orbital magnetic moment of the electron is an adiabatic invariant of its motion

an isotropic momentum distribution at high field can be transformed into a collimated distribution by weakening the field gently

$$\mu \sim \frac{(p_T)^2}{B} = constant$$

Interlude: The MAC-E Principle

if an electron is moving in a magnetic field that varies little over a single cyclotron gyration, the orbital magnetic moment of the electron is an adiabatic invariant of its motion

an isotropic momentum distribution at high field can be transformed into a collimated distribution by weakening the field gently

the collimated electrons can then be analyzed by an electrostatic filter

$$\mu \sim \frac{(p_T)^2}{B} = constant$$

Analysis: The Spectrometers

- resolution of MAC-E filter depends on the ratio B_{min}/B_{max}
- high resolution spectrometers are also excellent magnetic bottles
- electrons from nuclear decays in the spectrometer are trapped in the bottle causing backgrounds
 15 Jun 2012 D Furse ICFP 2012

Analysis: The Spectrometers

Signal: The FPD

Summary

- neutrino mass is a powerful piece of information in our understanding of the universe
- all main KATRIN components are nearly complete
- scheduled first data to come in 2015!

Summary

- neutrino mass is a powerful piece of information for our understanding of the universe
- all main KATRIN components are nearly complete
- scheduled first data to come in 2015!

Thanks for your attention...

... let's have a coffee!