## Highlights from the OPERA experiment

#### Nicoletta Mauri on behalf of the OPERA Collaboration

#### INFN - LNF

#### 1<sup>st</sup> International Conference on New Frontiers in Physics Kolymbari, June 14<sup>th</sup>, 2012





## **OPERA** Collaboration



#### Outline

#### Outline

The OPERA experiment

Detection principle

2 Oscillation results •  $\nu_{\mu} \rightarrow \nu_{\tau}$  search

- $\nu_{\mu} \rightarrow \nu_{e}$  search
- Non-Oscillation results
   Neutrino velocity



3 🕨 🖌 3

ELE NOR

## **OPERA** experiment

Oscillation Project with Emulsion tRacking Apparatus

Aim: first direct  $\nu_{\mu} \rightarrow \nu_{\tau}$  appearance detection



Full coverage of the parameter space for the atmospheric neutrino sector

- Long baseline neutrino oscillation experiment located in the CNGS (CERN Neutrinos to Gran Sasso)  $\nu_\mu$  beam
- Direct search for  $\nu_{\mu} \rightarrow \nu_{\tau}$  oscillations detecting the  $\tau$  lepton produced in  $\nu_{\tau}$  CC interactions (appearance mode)
- Search for the subdominant  $\nu_{\mu} \rightarrow \nu_{e}$  oscillations

#### CNGS beam

CNGS beam optimized for  $\nu_{\tau}$  appearance  $\Rightarrow$  maximize the number of  $\nu_{\tau}$  CC interactions

- $\tau$  production threshold (3.5 GeV) and  $\nu_{\tau}$  CC cross section  $\longrightarrow$  high energy beam
- "off peak" w.r.t. maximum oscillation probability (~1.5 GeV)

#### Beam parameters

| $< E_{ u_{\mu}} >$                | 17 GeV            |
|-----------------------------------|-------------------|
| $( u_e + \overline{ u}_e)/ u_\mu$ | 0.89, 0.06 %      |
| $ar{ u}_{\mu}/ u_{\mu}$           | 2.1 %             |
| $ u_{	au} $ prompt                | negligible        |
| pot/year                          | $4.5	imes10^{19}$ |

Contaminations given in terms of interaction rates in OPERA



For  $22.5 \times 10^{19}$  pot  $\longrightarrow$ Expected events: 7.6 signal, 0.8 bg

New J. Phys. 14 (2012) 033017

Highlights from the OPERA experiment

#### Detection principle

## Appearance detection



- Large mass [ $\sim$  O(kton)] due to small neutrino cross section  $\rightarrow$  lead target
- High granularity [ $\sim 1\mu$ m] for signal selection/background rejection (clear identification of the "kink")  $\rightarrow$  nuclear emulsions

#### Emulsion Cloud Chamber

N. Mauri (INFN-LNF) Highlights from the OPERA experiment ICFP 2012 6 / 30

(B)

EL OQO

## Neutrino interaction detector (ECC)

- Target basic unit: brick of 57 nuclear emulsions interleaved by lead plates + 2 interface emulsions (CS)
   → high resolution and large mass in a modular way
- unambiguous measurement of the kink





• "stand-alone" detector



#### total OPERA target: ~150000 bricks $\rightarrow$ ~1,25, kton =

Highlights from the OPERA experiment

ICFP 2012 7 / 30

#### **OPERA** detector

Electronic detectors: 1: "time resolution" to emulsions; 2: trigger and preselection of candidate bricks; 3: muon ID and momentum/charge measurement



8 / 30

## CNGS data taking: status and outlook

#### POT and number of events

| Year | Proton On Target<br>POT  | Number of Neutrino<br>Interactions | Integrated POT<br>/ Proposal Value |
|------|--------------------------|------------------------------------|------------------------------------|
| 2008 | 1.78×10 <sup>19</sup>    | 1698                               | <b>7.9</b> %                       |
| 2009 | 3.52×10 <sup>19</sup>    | 3557                               | 23.6%                              |
| 2010 | 4.04×10 <sup>19</sup>    | 3912                               | 41.5%                              |
| 2011 | 4.84×10 <sup>19</sup>    | 4210                               | 63.0%                              |
| 2012 | (~4.7×10 <sup>19</sup> ) | (~4050)                            | (~84%)                             |

- $14.2 \times 10^{19}$  POT up to 2011
- Good performance for current 2012 Run:  $6.63 \times 10^{18}$  POT up to 30/04, special Bunched Beam from 10/05 up to 24/05
- Expected POT after 2012 Run:  $18.9 \times 10^{19}$  (Proposal:  $22.5 \times 10^{19}$ )

I= nan

## Scanning and analysis

Vertex location and event analysis in the OPERA brick

- Prediction scanning, driven by electronic detector tracks
- Define the stopping point
- Large area scan around the stopping point
- Interaction reconstruction and decay search



**ICEP 2012** 

10 / 30



Highlights from the OPERA experiment

#### Data/MC comparison Charm control sample: proof of the $\tau$ efficiency

# $\begin{array}{c} \mbox{Charm events} \\ \mbox{Detected: 49 events} \Leftrightarrow \mbox{Expected: 51}{\pm}7.5 \mbox{ events} \\ \end{array}$



Highlights from the OPERA experiment

ICFP 2012 11 / 30

#### Signal candidate

First  $\nu_{\tau}$  candidate found in the decay search of 2008 and 2009 Physics Runs Released in June 2010 (Phys. Lett. B 691 (2010) 138)



N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

ICFP 2012 12 / 30

#### New $\nu_{\tau}$ candidate event



N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

ICFP 2012 13 / 30

#### Schematics of the event: $\tau \rightarrow 3h$



#### Electronic detector event display



N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

ICFP 2012 15 / 30

#### Event kinematics

New candidate event

- no muons at the 1ry vertex primary track incompatible with muon hypothesis (p/range)
- fulfil the kinematic selections

|                                          | Cut            | Value | Error  |
|------------------------------------------|----------------|-------|--------|
| Phi (Tau - Hadron) [degree]              | >90            | 167.8 | ± I.I  |
| average kink angle [mrad]                | < 500          | 87.4  | ± 1.5  |
| Total momentum at 2ry vtx [GeV/c]        | > 3.0          | 8.4   | ± 1.7  |
| Min Invariant mass [GeV/c <sup>2</sup> ] | 0.5 <<br>< 2.0 | 0.96  | ± 0.13 |
| Invariant mass [GeV/c <sup>2</sup> ]     | 0.5 <<br>< 2.0 | 0.80  | ± 0.12 |
| Transverse Momentum at Iry vtx [GeV/c]   | < 1.0          | 0.31  | ± 0.11 |

N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

#### Event kinematics

#### New candidate event



Satisfying the specified criteria for  $\tau \to 3 {\rm hadron}$  decay are save

N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

#### Status of the $\nu_{\tau}$ search

| Years         | Status      | # of events<br>for Decay<br>search | Expected<br><sup>V</sup> 7<br>(Preliminary) | Observed<br>$v_{\tau}$<br>candidate<br>events | Expected<br>BG for ν <sub>τ</sub><br>(Preliminary) |
|---------------|-------------|------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| 2008-<br>2009 | Finished    | 2783                               |                                             | I                                             |                                                    |
| 2010-<br>2011 | In analysis | 1343                               |                                             | I                                             |                                                    |
| 2012          | Started     |                                    |                                             |                                               |                                                    |
| Total         |             | 4126                               | 2.1                                         | 2                                             | 0.2                                                |

#### $\nu_e$ search

Systematic  $\nu_e$  search in  $0\mu$  located events (NC-like) from 2008 and 2009 Runs

- Extrapolate primary tracks to CS
- Search for shower hints on CS
- If shower hints, open additional volume



 $u_e$  candidate event,  $E_{\nu}=15.6~{
m GeV}$ 



Result: • 96 events selected

• 19  $\nu_e$  confirmed

Highlights from the OPERA experiment

ICFP 2012 19 / 30

## Preliminary $\nu_{\mu} \rightarrow \nu_{e}$ oscillation result



oscillated  $\nu_e$  1.5, BG-beam  $\nu_e$  19.2 Observed: 19 events After low-energy selection ( $E_{\nu}$  < 20 GeV)

- Expected events: oscillated 1.1, beam-BG 3.7
- Observed events: 4  $\nu_e$ 
  - $\Rightarrow$  limit on oscillation parameters



Highlights from the OPERA experiment

#### Neutrino velocity

Neutrino TOF measurement:

- neutrino production time at CERN
- neutrino interaction time inside OPERA
- precise path length measurement (geodesy)
  - Distance (BCT-OPERA) = (731278.0  $\pm$  0.2) m
- long baseline needed for high accuracy



$$v_{\nu} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

Key ingredients:

- CNGS-OPERA synchronisation at ~1 ns (GPS common view mode)
- accurate calibration of the timing chains at CERN and OPERA
- precise ν time distribution at CERN through BCT proton waveforms

3 1 4

EL OQO

#### **CNGS-OPERA** synchronisation



#### Neutrino velocity

## BCT calibration

#### Fast Beam Current Transformer (BCT)

 Proton pulse digitized by a waveform digitizer (WFD)

Result: signal comparison after  $\Delta t_{BCT}$ compensation





Dedicated beam experiment: BCT plus 2 pick-ups ( $\sim 1$  ns) using the I HC beam.  $\Delta t_{BCT} = (583.7 \pm 1) \text{ ns}$ (time difference between  $t_{WFD}$  and  $t_{BCT}$ ) New measurement (May 2012)

N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

**ICEP 2012** 23 / 30

EL OQO

A B M A B M

#### Summary of calibration delays

| Item                                                                                       | Result         | Method                                                                                       |              |
|--------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|--------------|
| CERN UTC distribution (GMT)                                                                | 10077.8 ± 1 ns | Portable Cs     Two-ways                                                                     | S Z          |
| WFD trigger                                                                                | 26.6 ± 1 ns    | Scope                                                                                        | -8 I         |
| BTC delay                                                                                  | 583.7 ± 1 ns   | Portable Cs     Dedicated beam experiment                                                    | μÇ           |
| CERN-LNGS intercalibration                                                                 | 2.3 ± 1.7 ns   | METAS PolaRx calibration     PTB direct measurement                                          |              |
| LNGS UTC distribution (fibers)                                                             | 41067 ± 1 ns   | Two-ways     Portable Cs                                                                     |              |
| OPERA master clock distribution                                                            | 7046 ± 1 ns    | Two-ways     Portable Cs                                                                     | ,            |
| FPGA latency, quantization curve                                                           | 24.5 ± 1 ns    | Scope vs DAQ delay scan<br>(0.5 ns steps)                                                    | 2 ns<br>FR A |
| Target Tracker delay<br>(Photocathode to FPGA)                                             | 50.2 ± 2.3 ns  | UV picosecond laser                                                                          | ±4.0         |
| Target Tracker response<br>(Scintillator-Photocathode,<br>trigger time-walk, quantisation) | 9.4 ± 3 ns     | UV laser, time walk and photon<br>arrival time parametrizations, full<br>detector simulation |              |

三日 のへで

イロン イヨン イヨン イヨン

#### Two instrumental problems found after first data release

Test of the delay of the 8.3 km long optical fiber and of the DAQ internal delays

- Dedicated campaign (Dec 2011 Feb 2012)
- Two identified issues in the timing chain at LNGS:
  - faulty connection of the optical fiber to the OPERA Master Clock
     ⇒ artificial neutrino anticipation ~74 ns
  - internal Master Clock frequency higher w.r.t. nominal value by  $\Delta f/f = 1.24 \times 10^{-7} (124 \text{ ns/s})$  $\Rightarrow$  artificial neutrino delay ~15 ns

Investigation on when anomalous conditions occurred during the data taking and on their stability



= 200

글 > - - 글 >

#### Systematics study with cosmic muons Joint OPERA-LVD analysis

Coincidences using horizontal cosmic muons coming from the Teramo Valley





- fiber delay problem from 2008 and lasting in stable conditions up to end 2011
- inaccurate oscillator frequency since the beginning of the data taking, drift stable along the years

N. Mauri (INFN-LNF)

#### Preliminary 2011 result correction

2011 result corrected according to the new measured parameters



Bunched beam: event-by-event analysis

- 20 events detected by the TTs
- $\delta t = (1.9 \pm 3.7)$  ns
- excludes possible biases due to statistical analysis and to long proton pulses

Statistical analysis:

- Likelihood approach, maximisation by varying  $\delta t = TOF_c TOF_{\nu}$
- $\delta t = (6.5 \pm 7.4(stat.)^{+9.2}_{-6.8}(syst.))$  ns



T. Adam et al. [arXiv:1109:4897] soon revised and resubmitted to JHEP

Highlights from the OPERA experiment

# New measurements with a short-bunch narrow-spacing proton beam (May 2012)

#### Bunched beam from 10 to 24 May



- 4 batches per extraction
- 16 bunches per batch
- POT:  ${\sim}2{\times}10^{17}$  (2 weeks)



- Improved OPERA timing systems, redundant measurements
- 106 on time events (both external and contained)

ICFP 2012 28 / 30

#### New OPERA preliminary results with new BCT values



#### Conclusions

- OPERA is successfully collecting CNGS events since 2008
- $\nu_{\mu} \rightarrow \nu_{\tau}$ :
  - 2  $\nu_{\tau}$  candidate events so far (2.1 expected, with 0.2 BG events)
  - estimation of detection efficiency and background in progress
- $\nu_{\mu} \rightarrow \nu_{e}$ :
  - 19 events observed in 2008-2009 Run data, 4 surviving the selection cut (1.1 signal + 3.7 BG)  $\Rightarrow$  set constraints in the high  $\Delta m^2$  region

• Neutrino velocity:

- two issues affecting previous analysis completely understood and corrected in 2011 result
- preliminary 2012 results compatible with corrected 2011  $\rightarrow$  picture clarified

By the end of 2012, we should (almost) reach the nominal statistics  $\tau$  search goes on, few more events under study... stay tuned!

## Thank you for your attention!

N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

ICFP 2012 31 / 30

-

EL OQO

• • • • • • • • • • • •

◆□▶ <舂▶ <≧▶ <≧▶ ≤≧▶ Ξ|= のQ@</p>



## Backup

N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

ICFP 2012 33 / 30

< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 回 > < 回 > < < 回 > < < つ < ○</li>

#### Spares

#### $\nu_{\tau}$ decay modes



N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

**ICFP 2012** 34 / 30

#### Neutrino interaction types

**Detected Neutrino Interactions** 



N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

ICFP 2012 35 / 30

#### Spares

# Momentum measurement and particle ID of event tracks New $\nu_{\tau}$ candidate

| Track#  | Momentum<br>(1σ interval)<br>[ GeV/c] | Particle<br>ID | Method / Comments                                                                                                                                     |
|---------|---------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary | 2.8<br>(2.1-3.5)                      | Hadron         | <ul> <li>Momentum-Range<br/>Consistency Check</li> <li>Stops after 2 brick walls.</li> <li>Incompatible with muon<br/>( 26~44 brick walls)</li> </ul> |
| d1      | 6.6<br>(5.2 - 8.6)                    | Hadron         | <ul> <li>Momentum-Range<br/>Consistency Check</li> </ul>                                                                                              |
| d2      | 1.3<br>(1.1 -1.5)                     | Hadron         | Momentum-Range<br>Consistency Check                                                                                                                   |
| d3      | 2.0<br>(1.4 - 2.9)                    | Hadron         | Interaction in the Brick<br>@ 1.3cm downstream                                                                                                        |

Independent momentum measurements were carried out in two different labs

• • • • • • • • • • • •

ELE DOG

#### Clock distribution system

#### 10 ns UTC time-stamp granularity



N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

ICFP 2012 37 / 30

Spares

#### Timing chains at CERN and LNGS



N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

ICFP 2012 38 / 30

#### LNGS position monitoring



Monitor continent drift and important geological events (e.g. 2009 earthquake)

N. Mauri (INFN-LNF)

Highlights from the OPERA experiment

ICFP 2012 39 / 30