Open heavy flavour measurements in pp and Pb-Pb collisions with ALICE at the LHC

Sarah LaPointe for the ALICE collaboration Utrecht University

OUTLINE

Motivation

Measuring heavy flavours in ALICE

Open heavy flavour (HF) in pp and Pb-Pb collisions Production cross section in pp Nuclear modification factor Elliptic flow

Conclusions/outlook

MOTIVATION FOR HF MEASUREMENTS

Production

• Heavy flavour (HF) quarks (charm and bottom) are primarily produced in the initial hard scatterings of the collision

• They experience the full evolution of the system, making them excellent probes

ALICE baseline for charm/bottom

	Pb-Pb (5%) 2.76 TeV	pp 7 TeV	pp 14TeV
σ_{NN}^{qq} (mb)	2.1/0.075	6.91/0.23	11.2/0.45
N ^{qq} /event	56/2	0.1/0.003	0.16/0.006

MNR code: Mangano, Nason, Ridolfi, NPB373 (1992) 295. EKS98, EPS08: Eskola et al., EPJC9 (1999) 61; JHEP07 (2008) 102

Probing the QCD matter

• In-medium partonic energy loss - Both mass (dead cone effect) and color charge dependent $\rightarrow \Delta Eg > \Delta Eu, d, s > \Delta Ec > \Delta Eb$ Phys. Lett. B 519 (2001) 199 • Collectivity - in-medium transport properties. Probe the thermalization of the system

Energy loss is studied primarily via RAA and collectivity via flow (v2)

Sarah LaPointe

THE ALICE DETECTOR

Sarah LaPointe

HEAVY FLAVOUR PROGRAM

Mid rapidity ($|\mathbf{\eta}| < 0.9$)

D mesons (D⁰, D⁺, D^{*}, D_s) via hadronic decays
Select on displaced vertices using TPC and ITS
Particle ID using TPC and TOF

- Particle ID using IPC and I
- Invariant mass analysis

Single electrons from semi-leptonic D and B decays
e ID using TRD, EMCal, TPC, and ToF
Background estimated from MC cocktail or e⁺e⁻ M_{inv} method
Displaced electrons using ITS (B tagging)

Forward rapidity $(2.5 < \eta < 4)$

Single muons from semi-leptonic D and B decays

Muon spectrometer

 \bullet Background primary π , K decays. In pp estimated using MC, in Pb-Pb extrapolated from measured π , K at mid rapidity

Sarah LaPointe ICFP 2012, Kolymbari, Crete, Greece

pp OVERVIEW

• Charm and beauty production cross sections, along with a comparison to FONLL and GM-VFNS(D mesons)

- Additional charm hadron measurements
- Beauty with electrons Impact parameter analysis Electron-hadron azimuthal correlations

pp data sets: $\sqrt{s} = 2.76 \,\text{TeV} (2011)$ 7 TeV (2010)

pp AT 2.76 TeV, D MESONS AND MUONS

Small data sample $(L_{int}(D)=1.35nb^{-1}, L_{int}(\mu)=19nb^{-1})$

- Reference for PbPb collisions at 2.76 TeV
- Measured differential cross section for D mesons and HF muons

arXiv:1205.4007

arXiv:1205.6443

• The HF muon cross section is well described by FONLL predictions

Sarah LaPointe

pp AT 7 TeV, D MESONS, MUONS, ELECTRONS

- Measured production cross section of D mesons, muons and electrons
- •pQCD predictions (FONLL, GM-VFNS) describe the data well

Sarah LaPointe

BEAUTY WITH ELECTRONS

Electron-hadron correlations

extract relative B contribution to HF e yieldpp at 2.76 TeV

Impact parameter analysis

exploit relatively long lifetime of Bpp at 7 TeV

ADDITIONAL HF MEASUREMENTS

* For the Λ_c analysis is statistics-limited and corrections are ongoing

Sarah LaPointe

PbPb OVERVIEW

Nuclear modification factor

 $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{yield \ in \ AA}{yield \ in \ pp} = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{AA}/dp_T}{d\sigma_{pp}/dp_T}$

* N_{coll} depends on the centrality of the collision. Estimated using the Glauber model

Single electrons at mid rapidity
Single muons at forward rapidity
D mesons at mid rapidity

PbPb data sets: $\sqrt{s} = 2.76 \,\text{TeV} (2010,2011)$ minimum bias, central, EMCal, and muon triggers

• Elliptic flow- provides a measure of the strength of the collectivity • D Mesons $E_{d^3N}^{d^3N} = \frac{1}{2\pi} \frac{d^2n}{p_T dp_T dy} (1 + 2\sum_{n=1}^{\infty} \nu_n \cos[n(\phi - \Psi_{RP})])$

$$\nu_2 = <\cos(2[\phi - \Psi_{RP}]) >$$

SINGLE ELECTRON RAA

- Close to unity in peripheral collisions
- 0.5 for $p_t > 3$ GeV/c in central collisions
- Large uncertainties (systematics error ~35%, dominated by PID)

SINGLE MUON RAA

Single muons from HF decays and primary π, K (background)
Background: in pp estimated using MC, in Pb-Pb extrapolated from measured π, K at mid rapidity

pt > 4 GeV/c to limit systematics from background subtraction

arXiv:1205.6443

In central collisions a strong suppression is observed
No significant dependence on pt in the measured pt region

Sarah LaPointe

D MESONS IN PbPb

arXiv:1203.2160

Sarah LaPointe

D MESON RAA

arXiv:1203.2160

- Measured D^0 , D^+ , and $D^* R_{AA}$ agree
- In central collisions, a strong suppression is observed

D MESON RAA

arXiv:1203.2160

Suppression increases with increasing centrality

COMPARISON OF RAA

! Different rapidity range and decay kinematics

D mesons
 HF(c+b) muons arXiv:1205.6443
 B→J/Ψ (CMS) arXiv:1201.5069

No observable difference of charm and beauty suppression
Dead cone effect - radiative energy loss suppressed with increasing mass.

Currently no mass effect observed

COMPARISON OF RAA

D mesons
Charged hadrons arXiv:1012.1004
pions
B→J/ψ (CMS)

No observable difference of charm and beauty suppression
Dead cone effect - radiative energy loss suppressed with increasing mass.

- Currently no mass effect observed
- Suppression comparable
- Slight indication of hierarchy
- color charge effect?

MODEL COMPARISON

Model predictions describe both charged hadrons and D mesons well
I. Radiative + D meson in-medium dissociation (tuned to LHC jet data)
II. Radiative + collisional energy loss (tuned to RHIC data)
VII. Radiative + collisional energy loss (tuned to RHIC data)

* The model based on AdS/CFT drag coefficients significantly underestimates the charm RAA and have limited predictive power for the charged hadron RAA.

Sarah LaPointe

Momentum Space Azimuthal Anisotropy Momentum space azimuthal anisotropy - ELLIPTIC FLOW

Sarah LaPointe

ICFP 2012, Kolymbari, Crete, Greece

20

- Non-zero v_2 in semi-central collisions
- Decrease in v_2 with increased centrality

Non-zero v₂ in peripheral collisions
D+ comparable for centrality 30-50%

- Non-zero v₂ in peripheral collisions
- D+ comparable in 30-50%
- D mesons comparable to charged hadrons

COMPARISON TO MODELS

Partonic transport models (BAMPS and Aichelin et al) describe the D v_2 , but underestimate R_{AA}. Difficult for models to describe both observables.

SUMMARY

Open heavy flavours at ALICE measured via hadronic and semileptonic decay channels

Nuclear modification factor:

- Measured for several channels, each showing strong suppression in central collisions
- Moves toward unity in peripheral collisions
- Hint that $R_{AA}(\mathbf{\pi}) < R_{AA}(D)$

*more data and pPb collisions needed for a more conclusive statement

Elliptic flow:

- Indication of non-zero v₂
- Comparable with charged hadron v₂

Outlook:

- Separate charm and beauty contribution in the semielectronic channel
- Increase pt reach and decrease uncertainties
- Elliptic flow of electrons and muons from HF decays