New Constraints for the Transport Coefficients of the Quark Gluon Plasma (QGP)

Roy A. Lacey Chemistry Dept., Stony Brook University

Essential Question

> Do recent measurements at RHIC & the LHC, give new insights for characterization of the QGP?

Characterization of the QGP produced in RHIC and LHC collisions requires

I. Development of experimental constraints to map the topological, thermodynamic and transport coefficients

 $T(\tau), c_s(T), \eta(T), \zeta(T), \alpha_s(T), \hat{q}(T), \pm_{sep}(\tau),$ etc?

II. Development of quantitative model descriptions of these properties

Experimental Access:

✓ Temp/time-averaged constraints as a function of $√s_{NN}$ (with similar expansion dynamics)

$$\langle T \rangle, \langle c_s \rangle, \left\langle \frac{\eta}{s} \right\rangle, \left\langle \frac{\zeta}{s} \right\rangle, \left\langle \hat{q} \right\rangle, \left\langle \alpha_s \right\rangle, \text{etc } ?$$

(I) Expect space-time averages to evolve with $\sqrt{s_{NN}}$

RHIC (0.2 TeV) → LHC (2.76 TeV)

Power law dependence (n ~ 0.2)
 (dE_T/dη)/(⟨N_{part}⟩/2) increase ~ 3.3
 Multiplicity density increase ~ 2.3
 → <Temp> increase ~ 30%

Essential questions:

- $\succ How do the transport coefficients$ $\langle c_s \rangle, \langle \frac{\eta}{s} \rangle, \langle \hat{q} \rangle, \langle \alpha_s \rangle evolve with T?$
- Any indications for sizeable changes close to T_o?

Take home message:

The scaling properties of <u>flow</u> and <u>Jet quenching</u> measurements give crucial new insights

A few insights from the scaling patterns of flow

Flow

- ✓ is dominantly partonic,
- ✓ is sensitive to the harder EOS sampled in LHC collisions
- ✓ is acoustic
 - ➤ viscous damping follows dispersion relation for sound propagation → important constraint for <η/s> and its Temp. dependence
- These reflect characteristic scaling patterns which <u>are</u> experimentally validated

Is flow partonic?

For partonic flow, quark number scaling expected \rightarrow single curve for identified particle species v_n

Flow is partonic @ the LHC

Scaling for partonic flow validated after > Proton flow blueshifted accounting for proton blueshift

[hydrodynamic prediction]

- ✓ Sensitivity to harder EOS
- ✓ Role of radial flow

Role of hadronic re-scattering?

initial geometry [alone] is included

Characteristic n² viscous damping for harmonics \rightarrow Crucial constraint for η/s

$v_n(\psi_n)$ Measurements - ATLAS

ATLAS-CONF-2011-074

High precision double differential Measurements are pervasive **Do they scale?**

 β is essentially independent of centrality for a broad centrality range

Acoustic Scaling

 $\frac{v_n}{d} = \alpha \cdot \exp(-\beta n^2)$ \mathcal{E}_n

β scales as 1/ $\sqrt{p_T}$

 \checkmark single universal curve for v_n

Characteristic p_{τ} dependence of β \rightarrow Additional constraint for δf and η/s

 \checkmark < η /s> comparable at LHC and RHIC

Hydro - Schenke et al.

 $4\pi\eta/s = 1.25$

20-30%

0.30

Scaling properties of Jet Quenching

Jet quenching drives R_{AA} & high-pT azimuthal anisotropy with specific scaling properties

Geometric Quantities for scaling

- Geometric fluctuations included
- Geometric quantities constrained by multiplicity density.

Eur. Phys. J. C (2012) 72:1945 arXiv:1202.2554

Specific p_T and centrality dependencies – Do they scale?

Scaling of Jet Quenching

Dokshitzer and D. E. Kharzeev, Phys.Lett.B519:199-206,2001

$$R_{AA}^{l}(p_{T},L) \simeq \exp\left[-\frac{2\alpha_{s}C_{F}}{\sqrt{\pi}} \mathcal{L}\sqrt{\hat{q}\frac{\mathcal{L}_{l}}{p_{T}}}\right]$$

arXiv:1202.5537

 R_{AA} scales with L, slopes (S_L) encodes info on α_s and $q \sim Compatible$ with the dominance of radiative energy loss

Scaling of Jet Quenching

 R_{AA} scales as $1/\sqrt{p_T}$; slopes (S_{pT}) encode info on α_s and $\hat{q} \checkmark L$ and $1/\sqrt{p_T}$ scaling \rightarrow single universal curve \checkmark Compatible with the dominance of radiative energy loss

High-pT v₂ measurements - CMS

arXiv:1204.1850

Specific p_{T} and centrality dependencies – Do they scale?

 v_2 follows the p_T dependence observed for jet quenching Note the expected inversion of the $1/\sqrt{p_T}$ dependence

∆L Scaling of high-pT v₂

Combined ΔL and $1/\sqrt{p_T}$ scaling \rightarrow single universal curve for v_2

Jet suppression obtained directly from v₂

 R_{v2} scales as $1/\sqrt{p_T}$, slopes encodes info on α_s and \hat{q}

Extracted stopping power

 ^Q_{LHC} obtained from high-pT v₂ and R_{AA} [same α_s] → similar

 ^Q_{RHIC} > q_{LHC} - medium produced in LHC collisions less opaque!

 Conclusion similar to those of Liao, Betz, Horowitz,

 Stronger coupling near T_c?

Remarkable scaling have been observed for both Flow and Jet Quenching

They lend profound mechanistic insights, as well as New constraints for <u>estimates</u> of the transport and thermodynamic coefficients!

What do we learn?

 R_{AA} and high-pT azimuthal anisotropy stem from the same energy loss mechanism
 Energy loss is dominantly radiative
 R_{AA} and anisotropy measurements give consistent estimates for <[^]q_{LHC} > ~ 0.6 GeV²/fm
 The QGP created in RHIC

collisions is less opaque than that produced at the LHC

Flow is acoustic

- ✓ Flow is pressure driven
- ✓ Obeys the dispersion relation
- for sound propagation

✓ exhibits v_{n,q}

$$(KE_T) \sim v_{2,q}^{n/2} \text{ or } \frac{V_n}{(n_q)^{n/2}}$$

- > Constraints for:
 - ✓ initial geometry

 \checkmark < η /s> comparable at LHC and RHIC ~ 1/4 π

 ✓ actual temp dependence coming soon

End

Detailed mechanistic understanding?

Quantitative values (including T/t dependence)?

> Evidence for change in coupling strength close to T_c ?

 ϵ , α_s, δf, etc. <u>!!Much work to be done!!</u>

$v_n(\psi_n)$ Measurements - PHENIX

Phys.Rev.Lett. 107 (2011) 252301 (arXiv:1105.3928)

High precision double differential Measurements are pervasive **Do they scale?**

Decoupling the Interplay between ε_n and η/s

Flow is partonic

Similar scaling observed at the LHC