Present and future investigations of hadron formation mechanisms in heavy-ion collisions at LHC with the ALICE experiment

Current results on the transverse momentum dependence of the Λ/K_s^0 ratios at LHC and RHIC

Parton coalescence and fragmentation processes

STRASBOURG

Prospects for baryon over meson ratios in the charm and beauty sectors (Λ_c/D , Λ_b/B)

> Upgrade of the ALICE Inner Tracking System (ITS) Performance objectives and technological ingredients

Institut Pluridisciplinaire Hubert CURIEN Christian KUHN (IPHC-Strasbourg) for the ALICE collaboration

International Conference on new Frontiers in Physics (ICFP), Kolymbari, Creta, June 2012

ALICE

1

ALICE@LHC

Many open and new questions !

Excitation functions on the largest possible energy range
Transition between hard and soft processes
At LHC: "old" (different / better conditions) + novel observables

Designed to cover essentially all observables of interest in the soft and hard regimes (hadron, lepton and photon sectors) Tracking & particle identification in a large acceptance and p_T domain

The surprise !

Darton population density (a.u.)

An anomalously high baryon over meson ratio at

Example: the 1 GeV region is more populated than the 1.5 GeV region \rightarrow 3 GeV baryons (3 x 1 GeV quarks) are favored wrt 3 GeV mesons (2 x 1.5 GeV quarks)

From ideas to models

Parton Recombination + Parton Fragmentation (perturbative QCD) + Jet Quenching Effects

Parton coalescence models

Alternative idea and explanation: baryons junctions

Existence of topological gluon field configurations ~ baryon junctions \rightarrow predict long-range baryon number transport in rapidity as well as hyperon enhancement and considerable p_T enhancement relative to conventional diquark-quark string fragmentation (I. Vitev and M. Gyulassy, Phys Rev. C 65 (2002) 041902R

To discrimate between these scenarios, differential studies are needed:

- correlation between baryon/meson ratios and jets
- flavour dependence of baryon/meson ratios

Λ/K_{s}^{0} in PbPb collisions at LHC

Λ / K⁰_s in PbPb collisions at LHC

Prospects for heavy flavor baryon/meson ratios

Coalescence model predictions for Λ_{c}/D and Λ_{b}/B at RHIC

Yongseok Oh, Che Ming Ko, Su Houng Lee and Shigehiro Yasui, Phys.Rev. C79, 044905 (2009)

Partons produced in hard scatterings can combine with quarks and anti-quarks in the QGP
Possibility of recombination of a heavy quark with di-quarks present in the QGP (diquark model)
additional enhancement of the Λ_c and Λ_b

At low p_T , this could also lead to a rather significant enhancement of the Λ_c with respect to thermal models where the relative abundance of particles depends only on their masses

Current situation of charm and beauty measurements in PbPb collisions at LHC with ALICE

The $c\tau$ of the Λ_c (60 μ m) is a factor of 2 smaller than that of the D⁰.

needs a more precise tracking and track impact parameter resolution (the decay tracks typically have displacements of a few tens of microns ~cτ from the primary interaction vertex)
+ trigger possibilities based on a topological selection of 3 tracks associated to a secondary vertex

Upgrade of the ALICE Inner Tracking System (ITS)

In the perspective of high luminosity PbPb (2018) and the frame of the global reforging of ALICE

Performance objectives and layout of the new ITS

Layout and technology optimisation to get:

- Track position resolution at the primary vertex (pointing resolution) improved by a factor ~ 3.
- Standalone tracking efficiency comparable to what is presently achieved by combining ITS & TPC.
- Momentum resolution of about 2% up to 2 GeV/c and remaining below 3% up to 20 GeV/c.
- Particle identification (PID) capabilities at least equivalent to the present ones.
- Extension of the trigger capabilities for enhancing the statistics of rare heavy flavour signals.
- Capability to read the data related to each individual interaction up to a rate of **50 kHz for PbPb** collisions and **2 MHz for pp** collisions.
- Radiation tolerance / year: > 700 kRad (ionizing radiations) and > 10¹³ n_{eq} /cm² (non-ionizing)

- First detection layer closer to the beam line. A new beampipe with an outer radius of 19.8 mm is foreseen. First detection layer: 39 mm (current radius) → ~ 22 mm
- 2. Reduction of material budget. Challenge: 0.3 0.4% of X0 per detection layer.
- 3. Optimisation of the geometry and improvement of the granularity. Baseline scenario = completely new ITS with 2 options:

7 pixel (20 x 20 μ m²) layers with intrinsic resolution ($\sigma_{r_{\phi}}$, σ_{z}) = (4, 4) μ m²

3 pixel layers (the innermost ones) and 4 micro-strip layers (outermost) with $(\sigma_{r_0}, \sigma_z) = (20, 830) \ \mu m$.

Charm and beauty meson measurement with the upgraded ITS

Charm and beauty baryon measurement with the upgraded ITS

The various Silicon detector technologies

The pixel technologies

The pixel technologies

Some key parameters	Hybrid pixels	Monolithic pixels		
Granularity	Pixel size limited due to the bump bonding R&D ongoing: bump bonding with 30 µm pitch.	Small pixel size (~ 20 x 20 μm ²)		
Material budget	Two Si-chips limit the minimal material budget. R&D ongoing: thinning of the sensor \rightarrow 50 µm and of the readout chip \rightarrow 100 µm)	Thin sensor: 50 µm (0.05% X0)		
Radiation tolerance	Proven radiation hardness	lonizing: a few hundred kRad Non ionizing: 3 x 10 ¹² n _{eq} /cm ² To be improved by a factor 4 R&D ongoing: new technology (TOWER/JAZZ CMOS 0.18 μm)		
Readout time	Fast enough (L1 trigger)	To be improved R&D ongoing (target : < 7 μs)		
Cost	High due to to bump bonding	Low		

_

Conclusion

It is possible to build a new silicon tracker with greatly improved features in terms of:

- determination of the distance of closest approach (dca) to the primary vertex
- standalone tracking efficiency at low p_T
- momentum resolution
- readout rate capabilities
- + opportunity to perform online event selection on the basis of topological criteria
- → Consequence of the spectacular progress made in the field of imaging sensors over the last ten years as well as the possibility to install a smaller radius beampipe

The new ITS will enable:

- Measurement of charm and beauty production in Pb-Pb collisions with sufficient statistical accuracy down to very low transverse momentum
- Measurement of charm baryons
- Exclusive measurements of beauty production
- Understanding of the energy loss mechanism, the hadronisation processes and the thermalization of heavy quarks.

Essential for the longterm goal of the ALICE experiment that is to provide a precise determination of the Quark Gluon Plasma properties

BUSY YEARS AHEAD !

2012 - 2014 : R&D activities and prototyping

2014 - 2016 : Component fabrication, module construction and characterization 2016 - 2017 : Detector integration and pre-commissioning on surface in laboratory 2017 - 2018 : Installation, commissioning and operation Backup

- From the RHIC era:
- "A (locally) thermally equilibrated state of matter in which quarks and gluons are deconfined from hadrons, so that color degrees of freedom become manifest over nuclear, rather than merely nucleonic, volumes"

Weak decaying strange particles play a key role for the baryon over meson ratio measurements since they can be measured in a wide p_T range thanks to the topological recontruction of their decay chain

Topological recontruction of the Λ decay

Recombination versus coalescence versus baryon junctions

P_T dependence of D⁰ and D⁺ invariant mass distributions in PbPb at 2.76 TeV

Transverse momentum spectra of D⁰, D^{*}, D^{*+} in PbPb collisions at 2.76 TeV

ALICE Collaboration: arXiv:1203.2160v1 [nucl-ex]

Simulation validation

m

2

응

1 350

250

200

150

100

50

8.2

0.4

0.6

0.8

Fast Estimation Tool

Full Monte Carlo simulation

Data, pions

Data, kaons Data, protons

ALICE performance 10/12/2010

vs = 7 TeV (2010 data)

ITSUpgrade, pions

ITSUpgrade, kaons

ITSUpgrade, protons

1.2 1.4

1.6 1.8

Pt [GeV/c]

Present Inner Tracking System (ITS)

Layer	Technology	R (cm)	±z (cm)	Spatial resolution (µm)		Material budget	et
				rφ	Z	^/ ^ ₀ (70)	
1	Pixel	4.0	14.1	12	100	1.14	Provide Level 0
2	Pixel	7.2	14.1	12	100	1.14	(latency < 800 ns)
3	Drift	15.0	22.2	38	28	1.13	
4	Drift	23.9	29.7	38	28	1.26	Provide dE/dx for
5	Strip	38.5	43.2	20	830	0.83	identification
6	Strip	43.6	48.9	20	830	0.83	
							NAA41
Silicon Pixel Detectors						ors 🍃	A A A A A A A A A A A A A A A A A A A

P= 43.6 cm

Simulation tools

- Fast Estimation Tool (FET): "Toy-Model" originally developed by the STAR HFT collaboration which allows to build a simple detector model.
- Fast MC Tool : Extension of the FET -> allows to disentangle the performance of the layout from the efficiency of the specific track finding algorithm
- Full Monte Carlo : Transport code (geant3) designed to be flexible : the detector segmentation, the number of layers, their radii and material budgets can be set as external parameters of the simulation.

Two basic ITS upgrade scenarios

